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Perturbative corrections to the Ohta-Jasnow-Kawasaki theory of phase-ordering dynamics
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A perturbation expansion is considered about the Ohta-Jasnow-Kaw@sH#Kki theory of phase-ordering
dynamics, which is an approximate theory describing the coarsening dynamics of a system with a noncon-
served scalar order parameter. In this calculation the nonlinear terms neglected in the OJK equation for the
evolution of the auxiliary field are reinstated and treated as a perturbation to the linearized equation. The first
order correction term to the pair correlation function is calculated in the ldigeit, and found to be of order
1/d2. [S1063-651%98)07011-1

PACS numbsgs): 64.60.Cn, 82.20.Mj, 05.70.Ln

I. INTRODUCTION ensure that the distribution for the auxiliary field at later
times is also Gaussian. This feature of OJK theory has been
When a system is quenched from a high-temperature, haguestioned by Yeung, Oono, and Shinozg@i Their simu-
mogeneous phase into a two-phase region, domains of tHations, which explicitly calculate the auxiliary field distribu-
equilibrium phases form and evolve with time. If the ordertion, gave results which are not exactly Gaussian, particu-
parameter is nonconserved, then the coarsening dynamics degly at small values of the auxiliary field. We note that
modelled by the time-dependent Ginzburg-LandaDGL) recently, in a series of papers, Mazenke8], and Wickham
equation[1]. and Mazenko[9] have presented an approximate theory
In one dimension this system is exactly solufi®d, but  which goes beyond the Gaussian distribution.
due to the nonlinear nature of the TDGL equation, no exact Second, it was proposed by both Bray and Humayuij
solutions are available for a general number of dimensionsand Liu and Mazenk$11] that the OJK approximation be-
so we must rely on approximate theories. There are severabmes exact as the number of dimensions approaches infin-
approximate theories which describe the coarsening dynanity. Evaluating the dimensional dependence of the first order
ics of this system. However, they all rely on a similar ap-correction term enables this hypothesis to be tested.
proach in which the order parameter is replaced by a The main result of this paper is that the first order correc-
smoothly varying auxiliary fieldn, which has the same sign tion to the correlation function i©(1/d?), lending weight to
as¢, and whose zeros define the domain walls. The equatiothe assertion that the OJK theory becomes exact in an infinite
of motion (TDGL) is then recast in terms of this auxiliary number of dimensions. The exact form of the leading order
field, and various approximations are made in order to makeorrection to the two-time correlation functio@,(r,t;,t,),
the resulting equation soluble. In the Ohta-Jasnow-Kawasak$ calculated in the largd-limit; this is found to obey both
(OJK) [3] theory, this is achieved by replacing the nonlinearPorod’s Law[12] and the Tomita sum rulgl3], with the
terms by their spherical average, thus linearizing the equasingular contribution in the correction term modifying the
tion for the auxiliary field . amplitude of the Porod tail, and in the lini=>t,, it is found
Comparison of the OJK results with simulation dp4d  that the correction term is of exactly the same form as the
have shown that this theory gives a very good description ofero order result. The complexity of the calculation, how-
the system. However, the approximation is uncontrolled, aneéver, has so far prevented the evaluation of higher order
it is unclear why this approach gives such accurate predicterms.

tions. Furthermore, Blundell, Bray, and Satt[&] pointed In Sec. Il we present an outline of the OJK calculation,
out that by plotting (1-C,) against 1C 42, where which provides the starting point for the perturbation calcu-
lation. Then, in Sec. Ill, we proceed with a detailed descrip-

Cy=(p(x+r,)d(x,1)), (1) tion of the perturbation calculation. We conclude with a

summary and discussion of the results.

(o)
(1= 2O+ D)1= d*(x0) Il. OJK THEORY

thereby removing any adjustable parameters, the OJK theory Consider a system described by a nonconserved scalar
does not follow the simulation data as closely as previougrder parameter. The evolution of this system following a
comparisons, using onl§;, suggested. An obvious way to rapid quench from a high-temperature homogeneous phase to
examine this approximation is to treat the neglected nonling regime where there are two equilibrium phases is described
ear terms as a perturbation to the linearized equation of myy the TDGL equation
tion, and this is exactly the approach taken in this paper.

This calculation has two main advantages: first, in OJK
theory the initial conditions are conventionally taken to be dp(X,1) __ SF[¢] &)
Gaussian; since the evolution equation is linear, this will at oS¢

¢2
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V\{heretl):[ql)] is a Ginzburg-Landau free energy functional, C(r,ty,t)=(sgim(x+r,t;)]sgim(x,t)]). (10

iven

° g It is convenient to choose Gaussian initial conditions for the

F[q&]:f dx [ IV 4[24 V($)]. @ auxiliary field, with zero mean, and correlator

(m(x+r,00m(x,0))=A5(r). 11

V(¢) is a potential whose minima define the equilibrium _ . L . i .

values of the order parameter; the conventional choice in theince the evolution equation is linear, the auxiliary field will

case of a scalar order parameteWisp) = (1— $2)%/4. Note then have a Gaussw\_n d|str|bl_Jt|on at qII times. Therefore, to

that there is no noise term in this equation, hence the resulg@/culate the correlation function we simply need to evaluate

are only valid for quenches to temperatures where the effed'® joint probability distribution fom(x+r,t)=m(1) and

of thermal fluctuations is negligible. m(x,t;)=m(2). This is given by

Following the work of Ohta, Jasnow and Kawasgg],

the scalar fieldg(r,t) is replaced by a smoothly varying P[M(1),m(2)]= 1
auxiliary field m(r,t), where ¢(r,t) and m(r,t) have the ' 2m[S(1)S(2)(1— y?)]Y2
same sign. The zeros of the fialdthen define the positions , ,
of the domain walls, and the normalto a domain wall in exd — 1 m(1) N m(2)
the direction of increasing is given by 2(1— 72) S(1) S(2)
~_Vm m(1)m(2)
n= g ©) —2y———-——||, (12)
[Vm T[s(1)s(2)]"
Inserting this into the Allen-Cahn equation for the velocity of wherey is the normalized correlator:
an interfacg14], v = —K=—V-n, whereK is the curvature
of the interface, we obtain (m(1)m(2))
Y= 2\1/2 2\1/2 (13)
1 2m (M(1)HMEm(2)?)
=——| - V2m+nn,—— (6)
v |Vm| Haxiox; )’ 4tgt, |94 r2
Rk ex’{_ 7o |

wherev is the speed of the interface in the directiomoiVe
now seek to obtain an evolution equation fofr,t) by link- 544 S(1)=(m(1)?) andS(2)=(m(2)?) [1]. Completion of

ing the domain-wall velocity to the time dependence of theyhe average over the fiela yields the final OJK result for
auxiliary field. The total time derivative of the auxiliary field he correlation function, and is given by

in a frame of reference moving at a velocityis given by

2
dm om C(r,ty,to)=—sin"1y. 15
oA vm. @) (r,ty,ty) p Y (15

) ) _ ) ) ) We note that this result only has a trivial dependence on the
If this frame is moving with the interface velocity, then  gimensiond, through the diffusion constam=1—1/d.

=vn andVm are parallel, and the total derivative mfvan-

ishes, implying that IIl. PERTURBATION THEORY
am(r,t) The starting point for this calculation is the OJK equation
oo = vlvml. (8  for the evolution of the auxiliary fieldn(x,t) (derived in
Sec. I)),
We now substitute the expression for the interface velocity 9
[from Eq. (6)] into Eq. (8) to obtain a—mzvzm—n-n- g"m (16)
ot ! J(?Xi(?Xj,
am_ a%m _ . o
v omoningo—-. (9  wheren=Vm/|Vm|. As noted in Sec. Il, this equation is
i0X;

highly nonlinear, and to make analytic progress OJK ap-
This is the time evolution equation for the auxiliary field Proximated the nonlinear termn; by its spherical average,

obtained by OJK. dij /d, reducing Eq.(16) to the diffusion equation with dif-
To make analytic progress, we now linearize this partiaffusion constanD=1-1/d. o .
differential equation by replacing;n; by its spherical aver- ~ In this calculation, the terms dropped in this approxima-

aged;; /d. In this approximation, the evolution of the field is tion are treated as a perturbation to the diffusion equation,
governed by a simple diffusion equation with diffusion con- and the first order correction to the correlation function is
stantD=1—1/d. To calculate the correlation function we Calculated. Therefore the equation we wish to solve is

need to express the original order parametein terms of P s
the auxiliary field. In the thin wall limit this is given by —m=DV2m—)\(ninj— J)
=sgn(m), therefore, ot d

m
&Xi (9X] ’

(17)
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where\ is a small perturbation parameter. back into Eq.(17) and equating orders ok gives two
The solution of Eq.(17) can be expressed as a power coupled partial differential equations far, andm;, the so-
series in\, m(r,t)=my+Am;+O(\?); substituting this lutions to which are given by

Mol = [ 4G~ (410, (9
t dimo( g, 7)dMo(p,7)  8ij | 9°Mo(p,7)
m r,t=—deJdd G(r—pt—7)| — -l : (19)
(o 0 HE(T pt=) |Vmo(p,7)|? d) dmiou
whereG(u—r,7—t) is the Green'’s function for the diffusion equation and is given by
G = - ~ 20
(r,t)—mex ~ Dt (20

and 9imo(p, 7) =[dMo(p, 7)1/ dps; .
In the thin wall limit the order parameter is related to the auxiliary field by the equatiesgn(m). Hence, by using the
integral representation of sgnj and expanding the expression for the correlation function,ime find that
C(r,t1,tp) =(B(X+T,t1) p(X,t2)) = Co(r,t1,t2) + NCy(r ) + O(N?), (21)
where
Co(r,ty,tz) =(sgn[mo(x+r,t) Jsgrimo(x,t2) 1), (22
Ca(r,ty,tp) =2{(sgri mo(x+r,t1) ]l Mo(X,t2) IMy(X,t2)) +(Sgrimo(X,t5) ]Sl Mo(X+r,t) Imy(X+1,t1))}. (23
If we defineC,(r,t;,t,) by
Ca(r,ty,tp) =2(sgr mo(x+1,t1) ][ Mg(X,t) IMy(X, 1)), (24)
then the first order correction to the correlation function is given by
Ca(rty, ) =Cy(r,ty, 1) + Co(— 1,15, ty). (25

Since the two terms on the right-hand side of the expressiol€fér,t;,t,) [Eq. (25)] differ only in thatt;—t, andr

——r, we will only deal with one of these averaged ter@s(r,t;,t,), evaluating the complete expression at the end of the
calculation.

Substituting form; from Eq. (19) into Eq. (24), we obtain the following expression f@;(r,t;,t,),

dmo(p, 7)dMo( p, 7)
|Vm0(ﬂv T)|2

asz( M, T)
Ipidp; |-
(26)

- to ; i
Cl(ritl’tZ):_sz de d"uG(X—mto—7){ sgrimg(x+r,ty)] ~q o[ mg(x,t2)]

We now impose the conventional Gaussian initial conditionswhere
with a zero mean, and a correlator given by

(M(x-+1,00m(x,0))=A(r). 27) iJ:< ( Jimo(p,7) 3 Mo, 7) ﬁ)
|Vm0(”'! T)|2 d
The average on the right-hand side of E2f) can be evalu-
ated if we extract the differential operatéf/du;du; from
the average by defining a new spatial variableEquation

Xng[mo(X‘*'r,tl)]mo(V-T)5[mo(X,t2)]>- (29
(26) can then be written as

. 2, The ensemble average in E®9) can now be completed
61(””2):_2[ szf d9uG(x— pt,— 1) 77 , by using the joint probability distribution connecting
0 vidvi|,_, the variables my(x+r,t;), me(X,ty), my(»,7), and

(28 [amo(pm, 7)1/ ;.
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For simplicity, at this point we introduce a contracted To evaluate Eq(35), we must complete the integrals over

notation: m. The integral ovem(3) is trivial; on settingn(3) to zero
o, 7) in Eq. (35), we see that the integral oven(2) can be re-
‘;—”’Tem{ L my(p ) —m(2), (30  duced to a Gaussian by completing the square in the expo-
i nent of the probability density function; F(m)/2 delA™ 1.

Mo(X,ty) —m(3), (31) For simplicity we deal with the expression fét(m) [Eq.

Mgo(X+r,t m(1), ! ; i .
ol D= m(d) (A32)] first. Completing the square using the substitution

and define the vectan by m'(2)=m(2)+[sm(1)+ % -m’]/q in m(2) gives
~ ’ ’ ’ ’ —g2
m=[mj,my,mj,....mj,m(1),m(2),m(3)]. (32 F(ﬁ]):m;(gkl_77k77|)ml,+(|oqs)m(l)2
The joint probability distribution for the components of this ( )
) ; Sm—
vector is then given by P 7Iq aé m'm(1)+ g’ (2)2 (36)
~ 1 1. -
mmFRZMMHmevhmm(_EMAm“’ This may be simplified further by substituting f§rand 2 in
(33) the factorsp—qé&, from Egs.(A27) and(A28), respectively,

to give

whereA;; ' = (m;m;). P(m) is evaluated in Appendix A, and sy QE= (pg—D)a—(us—que=(pa—sIh, (37

is given by
1 F(m) where this equation is used to define the vebtddsing Egs.
P(m)= exg — (A42) and(A44), h may then be written as
(277)((:1+3)/2(de1A71)1/2 2deid 1 !
(34) . us— qt) ( zy— a-c) 38
- =a— —|c=a— C.
whereF(m) is given by Eq.(A32). Pg—s Z\3—C?

Equation(29) may therefore be written in the form .
Substituting Eq(37) back into Eq.(36), F(m) reduces to

m:fwmjigmnf:mmaj:mmmm%)

F(ﬁ1)=m,§( Hkl_%) my
><( | —ﬁ) sgfm(1)Jm(2)am3)]. (39 (pg—)
Im’|2 d +——TT——UM1V—2h¢mnmn]+qm%2f.

The functionC,(r,t;,t,) defined by Eq(28) is evaluated (39
in three main steps. First, the expressionlip{Eq. (35)] is
evaluated. This result is then differentiated to obtainOn substituting Eq9.34) and(39) back into Eq(35) we find
52Iij l9vidvi|,-,, and, finally, this expression is substituted that them(2) integral is now in the form of a Gaussian, on
back into Eq(28) and the remaining integrals are completed.completion of which];; simplifies to

MM Gl L[ e
|m’|2 d 2den-t <17 g )

(pg-s?)
2qdetA !

ij— 312

(2 (@+212
I __(em 77 fddm’
q

[m(1)2—2h-m'm(1)]]. (40)

X fjc dm(1) sgim(1)](sm(1)+ »- m’)exp{ -

We now manipulate this expression into a form in which theintegral can be completed. First we need to remove the
|m’|? term from the denominator; this can be achieved by rewriting the denominator as an integral over an exponential,

! =J dv exg —v|m’'|?]. (41)
m2Jo
The second step is to manipulate thél) dependence so that the exponent in the complete expressigp ¢an be written
in the formm’TQm’, whereQ is adx d matrix to be determined later.
Due to the presence of the $gm(1)] function, the positive and negative ranges of the integral must be treated separately;
in each case we complete the square in the exponent using the substitetfjon(1)—h-m’]/h-m’. The antisymmetric
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contribution to them(1) integral in Eq.(40) may be evaluated directly, and the symmetric contribution reduces to a term
proportional to an error function. This integral, therefore, reduces to

, (pg—s?) ,
f dm(l)sgr[m(l)][sn‘(l)Jrr;-m)ex;{ 2qden 1[ m(1)>—2h-m’m(1)]
[ 1~ (pq_SZ) , ~
=a+,8k|mkm| Ldu ex;{—m(h-m )2(U2—1)‘|, (42)
where
_ 2qsdetA™!
(pg—+s?)
and
Bii=2h(m+sh). (43

Substituting Eqs(41) and (42) back into the expression fdy; [Eq. (40)], we obtain

I--—;jddm’ex —;m’ 0 _ Dt m;
'J_(Zﬂ_)(d+2)/2q3/2 2den-1 © ef q f

1 —g2 _
x(a+,8k,m{(m,’f0du ex;{—z(sz:\_)l(hm’)z(uz—l)D. (44)

5 - °°d~ ~1m’[2
g ommi vexgd—v|m’|?]

We are now in a position to define the general ma€i¢u,v) referred to earlier:

~ o~ 1 [ mn  (pa—s?)
Qii(u,v)= i — +
)= Gen1l %17 T

mhﬂaz—l))+2;&j. (45)

By expanding the right-hand side of E@4), we see that the exponent of each contribution is given by the gedrdl

matrix Q(U,v), evaluated at different values afandv. Equation(44) can therefore be written as the sum of four standard
integrals,

4
Iij:nzllinj, (46)
where
. S
19 = f dm’ exp{ m'TQ(1,0m’ } 29, , (47)
277_)(d+2)/2 3/2 27qu3/2[detQ(1,O)]1/2
P ¢ J’deJddm'm’m’exp( ® j do— (L) (48
=—— v N . = — v — s
2 (277)(d+2)/2q3/2 0 (| 27Tq3/2 0 [den(l,v)]l/Z
i B 6ij Jl ~J [{ 1 ~ } Sij B Jl - 0400
=—"—"— [ du| dm'm/m'exg —=m'"Q(u,0)m’ |= du — , 49
s d(2m)d+22g32) o K 2 (u.0) 2mdg®2o [detQ(T,0)]H2 (49)
|2= WJ‘ dvf duf dim’ m m mkm| exp{——m TQ(U v)m’ }
_ Bkl Q- U DOSNUT -1~ "\l -1~ N1

Details of the calculation of the inverse and determinanf)¢i,v) are supplied in Appendix B, and are given by equations
(B27)—(B14).
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At this point we can calculatezlij 19v;9vj|,-,, Which
once completed will be substituted into E&8). First, we
notice that the only variables which depend »in the ex-
pressions for thé]! are « and g, [defined in Eq(43)]. Our
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(72,Bk|‘ . (72U ’
&ViL;'VJ'|M (Z)\3—C2) &ViL;'VJ"M

2qz

hyc . (53

first step, therefore, is to simplify these quantities and then Differentiating Eqs(47)—(50) and using Eqs(B14), (51),

calculate their derivatives.
Inserting Eq.(A42) into the expression foe, and differ-
entiating, we find
Fa | 2 /z)d“ #s |
widvi|, (2hg— )\ N

aviﬁyj|", (51)

(From this point on we will use the notati@ﬁa/&viavﬂﬂ to
indicate that we are evaluating the differentiabat u.) To
simplify By, we substitute foh and » from Egs.(38) and
(A28) respectively; using EqA40), we find that

2q zy—a- C)c ]
Z)\3_C2 Z)\3_C2 K
X[(zv—b-c)c;—(zh3—?)by].

Bu=

ag—

(52

We now note that, from the definition df [Eq. (A8)],

#%bldv;dv;|,=0, so the derivative 0By, is given by

(3’2||4l —ZzhkC| (92U

and (53), we obtain the following expressions for the
P dviav;] .

Fab. 8ij (z)‘“r2 &s
Ividvi|,, dm(zng—c)[QA(L,0]Y2 N dvidvi],
(54
2
2] _ d+2 S
J |2 — 1 (E) (9(714(91/]'
Ividvi| , m(zhz—c?) \ N u
= dvQN1p)
f — (55)
0 A(d—2)/2[qA(1,v)]1/2
&Zlg Zztsijhkq 0721) fldN Qﬁl(D,O)
= Uo————,
(?ViﬁVj " dW)\(Z)\g_CZ) (9Vi(91/j “ 0 [qA(U,O)]lIZ

(56)

(9Vi(91/j Mﬂ-)\(z)\s_cz) t?Vi&Vj

+Q5 4 (U0)Q u)].

At this point we shall pause to give an overview of the

simplification of Eqs(54)—(57). We first consider Eq¥56)
and (57); on completing the contraction over theand |

indices, we obtain expressions in which theintegration

] 1
d”f du ———=
Mfo v 0 uA(d_Z)IZ[QA(U,U)]llz

[9Q51(U,0) 0 (U,0) + Q3 (U,0) 0, (u,v)

(57)

Before we complete the contraction over thandl indi-
ces in Eqs(56) and(57), we will derive some results which
will be used later. Using the definitions &f A, k, andq
[Egs.(38), (B13), (B26), and(B7), respectively, we find

may be completed exactly. We then complete the contrac-

tions over the andj indices in the expression

4 ij
n

Pl

7
(9Vi(?Vj B

P n=1 (9Vi(91/j

: (58)
"

and substitute this back into the expression @&(r,t;,t,)
[Eq. (28)].

Q1 (u,v)h;=

~~ N

~ q
k(v)-h==

(59

Az)\s—(A—l)c2>
ZA3—C? '

A(G,E)—A(

Using Eq.(59) together with the definitions d® ~*(u,v), h
and k [Egs. (B27), (38) and (B26), respectively we also
obtain:

T A= (A-D

Nki(v) 60
Z(z\3—cA)A(U,v)
Ng—2) k(v)-cu® k(2) (61)
ZAN7— Ci——=——==K .
(2hs ! AQA(u,v) i

Substituting Eqs(60) and(61) into Eqgs.(56) and(57), we can therefore complete the contractions ovekthadl indices to

obtain:
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P | zk(0)-csy &v fl du ©2
wiovi|, dwgizng—c?)? idvi|,Jo A(U,03?
A z v jwfl dudv Ak(v)-c 5 CiC;
widvi|,  mqtizng=c)? ivi| Jo JoA@2RA)R Az 1T AZng—(A- 1)
3ki(v)kj(v)u? ) . Mzhs— ) ciki(v) +ciki(v)] 63
qA(U,0)[AzZNz—(A—1)c?] ZAzNs— (A —1)E?] '

Equations(62) and(63) are now in a form in which we can complete théntegration. We see that the only integrals required
are[5duA (u,v) %2 andf3duu 2A(u,v) ~>2 sinceA (u,v) [which is defined by EqB13)] is of the formy+ 6u?, these
integrals overu may easily be completed to give

fldﬁ 1 B (zZ\3—C?) 64
o [A®G)1P2 A[AZAz—(A-1)[A(1p)]Y?
Jldﬁ i (2hs= ) (65)
0 [AWD)2 3A[AzAs— (A—1)R][A(1D)]%?

where A (1) = A%Z%(A A 3—Y2) — A (A — 1)z(\ 82— 2ya-c+\ ;) + (A — 1)%(a?c?—a-c?). We can therefore substitute
Egs.(64) and (65) into the right-hand side of Eq$62) and(63) to obtain

Mi9v;], dmhg(2ng—)[AA(L0]Y ¥idv;|
Ay z 7% F do ( k(v)- QX (1) +>\(zx3—c2)[ki(2;)cj+cikj(5)] 7
Ividv|,  m(zhg—c?) idvi|,Jo AV QA(1p) ]2\ [AzZns— (A - 1)) Az~ (A-1)P? '
|
We now substitute Eqg54), (55), (66), and (67) into Eq. The spatial integral overr may be completed by trans-

(58), and complete the contraction over thandj indices.  forming to spherical polars and choosing a change of vari-
The details of this calculation are contained within Appendixables which allows the integral to be completed by steepest
C. Following the contraction over thieandj indices, Eq. descents. In spherical polars the spatial integral may be writ-

(58) reduces to ten as
7j; N[O ()12 .
ViV ”_ ~wz)o dvnzl To (68) f diu= Tfo du Md_lfo de(sing)? 2.
]
where the termd,, are defined by Eq9C28—(C33). Sub- 2 (70)
stituting Eqs.(20) and(68) into Eq.(28), where without loss
of generality we can set=0, we obtain the following ex-
pression forC,(r,t;,t,): We notice that each expression IEF, [Egs. (C28-(C33)]
. contains the factorA ~92=(1+2\v/z) %% we therefore
aS T make the substitutiow=v\d/z, so that, in the large-limit,
~ t2 * ~ [ = this factor reduces to an exponentialin We also make the
Cl(r,tl,tz): dT dU d M - . . ~
0 0 wz(47D(t,— 7)) 9? additional substitutionr=t,(1—x/d), and rescalex to u
) =(xt,) “Y2u. The form of ther substitution is chosen in the
wexd — M 69) expectation that the contribution to the integral from later
4AD(t,— 1))’ times will dominate the result. Equatid@f9) then reduces to
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Ci(r,ty,t))= =1 the Gaussian integrals, we find

2 6

_ 2ty (= (=
Cutrtite) = g | [ oGS Tl e

S Sl

Now all that remains is to calculate the leading order con-

tribution from the integration ovex andw of the termsT,,,

. . . evaluated af.= 2D andy = m/2. Each of the terms may be

whereg(p, ) = (»“/4D) —In(u sing). expanded as a power series id land in Appendix D 2 each
Once the integral is in this form, the and ¢ integrals  term is evaluated t®(1), giving

can be completed in the largklimit by steepest descents.

4t, ( d \ 92 On substituting Eq(73) back into Eq.(72), and completing
) _D)

3/2d2F(

xexd —dg(g, ) 1Ty, (71)

Applying this limit does not represent a serious limitation on Y(t,—ty) exp(—x/2)W exp( — W)
the calculation, since this is the regime of most interest, as T,= T
explained in Sec. I. In the limid— oo, provided the larget 8Dta(ty+15) (1=
behavior of the termd; is controlled(as demonstrated in At ton? 2t02r2
Appendix D 1, the value of the integral is dominated by the | x| 1— 2r2? 2) 2Y (75)
contribution from the neighborhood around the minima of (t1+t2)°)  D(t;+1,)?
the functiong(u, ¥). _ _
Within the range of integration, the functigiz, ) has a T y(tz—t)X expl—x/2)w exp(—w) 76
global minimum atu= 2D and ¢=m/2. We can expand 2 4Dt,y(ty+1,)(1—y?) 22
the integrand to first order about this minimum, reducing the
w and ¢ integrations in Eq(71) into Gaussians, and giving Y(ty—1t1)X(X— 2)exp — x/2)exp — W)
3= T , (77
- 4at, exp(—d/2) d)9? 8Dty(ty+t2)(1— %)
Ca(r.ty,tr)= —7 |5
1/2,_3/242 d-1}12 2 ~
(2D) T T | —— — yr2xexp( — x/2)exp(—w) 79
4= )
6 iy 8D2(ty+1,)%(1— %12
fodxf AW T, oo 55 v -
n=1Jo Jo oli= 7.4 w2 —y exp(—x/2)exp(—w)
2D) 5 8Dt2(1_ ,y2)3/2
j d/.L ex D «| x 1_ 4tlt2’y2) 2t2')/2r2
(tl+t2)2 D(t1+t2)2
f d "” ml2)” 72
v ex - 13 ot tr? x( 48
_ . _ . _ titty D(t;+t,)%2 2 (ti+t)%) |’
Since we are only interested in the first order correction to
the correlation function, we use Stirling’s formula to evalu- (79
ate the leading order contribution from thdunction, which
is given by Te=0. (80)
r d-1) 2(277)1/2@ dlzexp(—d/Z) 73 We now complete th& andw integrations of the expres-
2 d |2 ' sions given in Eqs(75)—(80), finding
|
y(ta—ty) 4titry° ty’r?
f f dx dwT,= | 1 5|, (81)
2Dt2(t1+t2)(1 Y ) (tl tZ) D(t1+t2)
© (o - t _t
f f dx dwT,—— 72"t ., 82)
o Jo Dt,(ty+1,)(1—y?)?
) 0 - t _t
J f dx Ty (83)
0Jo Dty(ty+t2)(1—9)
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fwfwd dwT o (84)
X dwT,= ,
o Jo 12Dty +tp)X(1— D)2

4t3
C(ty+tp)?

( 8t1t2’y2 tz’yzrz
- 2
(t1+12)°  D(t+1,)?

el o] _~ —fy
dx dwTg=
J’O JO 5 2Dt2(1_ 72)3/2

t,—t; tor? 4t t,y? t,y2r? @5
1:1_|—‘t2 D(t1+t2)2 (tl+t2)2 D(t1+t2)2 ,
ffdx dw T¢=0. (86)
0JoO
On substituting Eqs(81)—(86) into Eq. (74), we obtain
L) 2y ( Aytpy? | [ 45 ) (- t)(1-9") 23— t)y'r? - Gy
r1 ] = - - .
B D rd2(1— 42)32 (ti+15)2)\ (ty+15)? (ti+ty) D(t;+t,)*  2D2(t;+1,)*
87

Finally, on substituting Eq(87) back into Eq.(25), we obtain the complete expression for the first order correction to the
correlation function:

(t2+12) y?r*
4D?(ty+1,)%

ti—t

4y

. 88
D7Td2(1_’)/2)3/2 ( )

Cy(r,ty,ty)=

2 4tit,y? y2r?
(t;+1)%  D(ty+ty)

We now express our final result for the first order correction to the correlation function in the same form as the exact OJK
result[Eqg. (15)]. In this form the correlation function is given by

2
C(r!tl!tz):;Slnil{ﬂy[l—’_)\F(rvtlatZ)]}! (89)
where
2 ti—ty)? At t,y? %2 ti+t3) y*r?
F(r ty,t,)= , , (tq 2)2 _ 127’2+ Y (ti+t5)y . (90)
Dd*(1—vy9) | (ty+ty) (ti+t2)° D(ti+ty))  4AD2(t +t,)*

We can clearly see from this expression that the first order Figure 2 shows a comparison of the zero order OJK result
correction to the correlation function @(1/d%), which lends  [Eq. (15)] with the perturbed result fa=2,3 and 4 at equal
weight to the assertion that the OJK result becomes exact itimes; the functions have all been scaled so that they have

an infinite-dimensional system. the same gradient at the origin. Although the result is only
valid for large d, the figure clearly demonstrates that the
Two special cases perturbation will have the effect of lowering the exact OJK

. . . result. This is discussed further in Sec. IV.
We now evaluate this result in two special cases: at equal |t \ve now expand Eq(91) aboutr =0, we see that, for
times, and when the times are widely separatgeht,. At ' '

. . . o smallr,
equal times, the first order correction term is given by
1 r 1 ro[, 3r? 7
Cy(r,t)= , 91 ~ —

l( ) 8D7szg<(Dt)l/2) ( ) Cl(l’,t) D7Td2 (Dt)l/z\l 16Dt+512:)2t2

where +o[r%(Dt?], (93
x*exp(— 3x?/8)
g(x)= (92)

[1—exp(—x?/4)]%? and hence the result obeys Porod’s Lia&] and the Tomita
sum rule[13].

This correction term clearly exhibits the expected scaling, We now consider the case where the times are widely

L~t%2 the scaling functiorg(x) is shown in Fig. 1. separated. If;>t,, then Eq.(88) reduces to
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g(x)

0.2 -

X

FIG. 1. Scaling function for the first order correction to the

correlation function.

4 [4t)| 9" r2
Cl(r,tl,tz)=m T ex T by, (94

Comparing this to the conventional scaling form,

Lo

Cl(rntlytZ)N(L_ y 4>t (99

)\h( r
1 Ll
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C(x)

[8).4

FIG. 2. Comparison of the OJK and perturbed correlation func-
tions, shown ford=2, 3, and 4. The solid line is the OJK result,
which is independent of dimension. As the dimension increases, the
size of the perturbation decreases.

Determining the dimensional dependence of the correction
term allows this hypothesis to be examined.

The main result of this paper is that the first order correc-
tion term to the correlation function ©8(1/d?), which gives
further confidence to the assertion that OJK theory becomes
exact in the larget limit. This may be compared to the cal-

whereL; andL, are the characteristic lengths for the systemculation of Liu and Mazenkd11], in which they made a

at timest; andt,, respectively, we find that=d/2, as ex-

perturbative expansion near=1 andd=« about the ap-

pected. We also note that the leading order correction to theroximate theory developed by Mazenkib]. At large d,
correlation function in this limit has exactly the same form asthe first order correction term in their expansion was found

the zero order correlation function; from E@.5), we have

2 t2 d/a r2
Co(r,tl,t2)= ;( ?) EX% - 4Dt1) . (96)

IV. DISCUSSION

In this paper | have described a perturbation theory appli
cable to OJK theory in a system with an infinite number o
dimensions and no noise. The leading order correction ter
to the two-time correlation function has been calculated b
treating the nonlinear terms in the OJK auxiliary-field evo-
lution equation as a perturbation to the linearized equation. .
There are two separate motivations for this study. First, sinc
in conventional OJK theory, the evolution equation is linear
and Gaussian initial conditions are imposed, it follows tha

t

to beO(1/d). The relative sizes of these corrections are con-
sistent with numerical simulatiorigl], which show that the
OJK result provides a marginally more accurate prediction of
simulation data for the pair correlation function than the
more sophisticated approach of Mazenko. However both re-
sults do suggest that the results of OJK are asymptotically
exact in infinite-dimensional systems. We also note that in a
recent work, Mazenk$8] developed a perturbation expan-

sion in the cumulants, which at zeroth order recovers the

;}QJK result. At second order, however, significant deviations

rom the OJK theory are obtained at lardein contrast to

the O(1/d?) correction obtained here.

The two-time correction term to the correlation function is
iven by Eq.(88). In the limit t;>t, [on comparing Egs.

94) and (96)], we find that the correction term has exactly
the same form as the zero order result, and the expected OJK

the distribution of the auxiliary field must be Gaussian at allresult,A =d/2, is recovered.

times. This assumption, present in many of the approximate If we examine the leading order correction at equal times,
theories, has been Critica”y assessed by Yeung Oono, argjven by EQ(gl), the first observation is that this function is
Shinozaki[6]; they showed that the auxiliary-field distribu- 0dd inr, as is the zero order term. Porod’s 1§2] is there-
tion measured directly from numerical simulations is not ex-fore obeyed; th®©(r) term in the expansiofEg. (93)] modi-
actly Gaussian. Hence, the advantage of the approach odies the amplitude of the lardetail, which is proportional to
lined above is that the auxiliary-field distribution may take the density of defectfl,12,16. The absence of ar? term

any form.
Secondly, it has been proposed by several aufidrd 1|

ensures that the correction term satisfies the Tomita sum rule
[13], fgdk[kd“S(k)—A]=0, whereA is the amplitude of

that OJK theory is exact in an infinite number of dimensionsthe Porod tail. We also note that the perturbation has a neg-
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ligible effect on the large-distance behavior of the correlatiorthe elements of the matri&~1; we can then find the inverse
function, see Fig. 1. of this matrix (A;;) and the determinant det .

Figure 2 demonstrates how the perturbation modifies the
OJK result, plottingCy+ C, for d=2, 3, and 4. Although
this calculation is only valid at largd, this graph demon- 1. Calculation of the correlators
Strates that the COI’reCtiOI’l term W|” haVe the effect Of IOWer- In th|s Section we eva'uate a" the e|ements Of the matrix
ing the OJK result. This is exactly as expected, since Huma 71 (m m ); for this we require the following correlators:
yun and Bray[4] showed, by comparing simulation results
with OJK theory, that while the OJK result provides an ac—< O(X t)mO(X U)). - (mo(x.) (a/ax) me(x'.t)),  and
curate prediction for initial conditions with short-range cor- ((a19x) r.no('x D (a/&x]-)'mo(x,t)) . .
relations, the theoretical result is slightly higher than the Substituting Eq(20) into Eq.(18) gives an expression for
simulation data. However, it has also been demonstrated th%ﬁe auxiliary fieldmo(x,t):
when long-range correlation are present in the initial condi-

2
tions, the OJK results are no longer satisfactp#y. This Mo(X,1) = ;J d?u mo(M,O)eXF{— M}
suggests that a possible extension to this work could be to (47Dt)¥? 4Dt
consider the effects of long-range initial conditions on the (A2)
calculation.

The main limitation of this calculation is that to retrieve o ) ) _
the full evolution equation for the auxiliary fielEq. (9)], ~ and substituting this expression into the correlator
we need to set the perturbation paramatéo 1. This means (Mo(X.t)Mo(X",t")) gives
that the calculation of the entire correction term requires a
sum over all orders iin. However, due to the complexity of D
the present calculation, | have been unable to evaluate the (Mo(X,HMg(X",t))
correction terms at higher ordersin In principle the sum of 1
the higher order terms could alter thledependence of the - —J gd f diAS(u—n)
correction term, but the result remains a strong indication (4wD)4(tt")92
that OJK theory becomes exact in an infinite-dimensional
— )2 I .02
system. y XF{— x-=w* X'-7
Finally, since we noted that the distribution of the auxil- 4Dt 4Dt’
iary field is non-Gaussian, it is of interest to consider the
exact form of this distribution. This can be calculated as
follows; the distribution can be written in the following where we have already applied the conventional Gaussian
form, P(x)=(8[x—m(r,t)]), this may be expanded iN initial conditions{mg(x+r,0)mg(x,0))=A &(r).
using m(r,t)=mg(r,t) +xmy(r,t) + O(\?), to give P(x) This integral may be evaluated by completing the square
=( [ x—mg(r,t)]) —N(my(r,t) (d/dx) S x—mg(r,t)]). The in the exponent and making a change of variabiés- u
first term on the right-hand side reduces to the expected-(t'x+tx’)/(t+t’), leaving a simple Gaussian integral
Gaussian distribution; the first order termNncan be evalu-  which, once completed, gives
ated using a similar method to the correlation function cal-
culation, i.e., by inserting the expression fag(r,t), multi-

: (A3)

plying by the relevant probability distribution function, and (Xx—x")2
completing the integrals. However, we will leave this ques-{Mo(X,t)My(X",t")) = —————-exg — ———|.
tion to future work. [4mD(t+t')]%2 4D(t+t(,)A4)
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APPENDIX A: EVALUATION OF THE JOINT mo(x,t)imo( t') M< Mo(X,t)Mo(x', 1)),
PROBABILITY DISTRIBUTION { 2D(t+t")

A5

In this appendix the joint probability distribution is ex- (A5)

plicitly calculated. It is defined by
] 1 <'9 () <t>> 2 my(x,Omy(x,0).
~ - - —mMg(X mMg(X Mo (X, t)Mg(X
P(m)= ex;{ -~ —m,A,jmj} i " ° 4Dt 0 °
(27r) (4312 deip 1) 12 2 (AB)

(A1)

whereAj *=(m;m;) and the vectom is defined in Eq(32). Substituting Eqs(A4), (A5) and (A) into the definition of
The flrst step is to calculate all the correlators which defineA™! (A =(m;m;)), we find
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1 0 :
a b c
L 0 1
AT=l5 a’ N, zw  zy |
b - zw A,
c - zy 2N
(A7)
where
z=4Dr,
A 27 |92 (X+r1—p)?
“@aDn2 "y TH T aowrn )
F\ 012 op |2 2
MZ(E) Tttt exp{_‘lD(tl““tZ) '
a1, o=| 22" (x2)” A8
T e A B T ) (R
S\ a2
el
o | (d+2)12 YT — )2
’T+t1 4D(t1+7')
(v—p)?
b—(v—u)exr{— 8D7 |’

2 (d+2)/2 (X_M)Z

2. Calculation of A

The elements of the matrik are calculated by construct-

ing the adjoint and determinant of the inverse, sinke
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0” § n ¢

Adi(A H=| ... g ... p s t (A9)
7 S g u
g t r

The elementg,q,r,...,u can then be calculated directly us-
ing a formula for the determinant of al¢2)X (d+2) ma-
trix of the form

: (A10)

which is given by
deB=(p’'—a’-c¢')(s'=b’-d")—(q'—b’'-c')(r'—a’-d").
(A11)

We derive this result by contracting the free indices in the
equation

deB= >,

ij...xyz

€j...xyB1iB2j  *Bgy2z,  (Al2)
wheree;; =y, is ad+2 anisotropic tensor, which takes the
value 1 if (ij - - -xy2) is an even permutation ¢fL23 - - (d
+2)], —1 for an odd permutation, and zero otherwise.
First consider the sum over the indexB4; is only non-
zero if i=1,d+1, or d+2, (By;=1, Bygi1=a; and
B1q+2=Db1), which implies that Eq(A12) may be written as

deB= > €. xyBzBar2+ D1, (A1)
jk---xyz
where
D,= > (€d+1jk .. .xy21B2j " Byai 2z
jk---xyz
+ €d12jk. . .xyD1B2j  Bay22)- (A14)

We now complete the sum ovein Eq. (A14) by noting that
the first term on the right-hand side of this expression will
only be nonzero if =2 orj=d+ 2, whereas the second term

=Adj(A"Y)/det(A"1). Let the elements of the adjoint be will only make a nonzero contribution jf=2 or j=d-+1,

defined by

D]_:
k---xyz

!
+ €41k, . xyD1Bak " Bgr22)-

giving

! ! ! ! !
> (€gridiak.. xy@21P2Bak  Bai ot €giod1 1k xyD182Bak Bar 2t €410 xy2R1Bak *Bar 2z

(A15)

We can now complete the sum over all the remaining indices for the first two terms on the right-hand sidéAdfFEcsince
for a nonzero contribution we must hake-3,1=4, ... x=d and eithety=1 andz=2, ory=2 andz=1. After completing
the sum ovek on the remaining right-hand side terms, E415) gives
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— ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Di=a;C;byd;+b;djasc, —a dibsc, —byciaxd; + | ZXVZ (€d+120+21 ... xy22103Bai" "By 2,

li !
+€d+23d+11 ... xyD133Bar Bai2,t €94 123

We can use this method repeatedly to sum over all the free

indices in Eq.(A16), eventually giving

d
D,=> (ajcibjd{+bjdiajc/ —ajdib/c/ —bjciad))
=2
—sac;+qa;d;—pbid;+rbjc;. (A17)

Substituting Eq(A17) back into Eq.(A13), we obtain

deB= D,

! ! i !
_ €1 .. xyB2j "Bara,—SaCy+qardy
jk...xyz
d
—pbidi+rbici+ > (ajcib/d/ +bidia/c]
=

—aydibjc{—bjciajd]). (A18)

We can now repeat this entire procedure to complete the

sums over the indicep. . . X, obtaining

deB=2 €15 ayBa+1yBasz—sa ¢ +qa’-d' —pb’-d’
yz
d d
+rb’-c’+i=2l JE>. (a/c/b/d/+b/d/a/c/

- ai’di, bJ’CJ’ - bi’ C’a’d,)

‘a/d] (A19)

Two of these terms simplify further; we find

% €12.. .dyzBd+lde+Zz: ps—qr,
d
=1 j>i (ai,Ci, bj’dj, + blldl,a]/CJ/ _ai,di/ bj,Cj, - bIICIIaJ/d]/)
—(a'-¢')(b'-d")~ (@ -d")(b'-¢),
and therefore EqA19) finally reduces to

deB:(pl_aI'C,)(S,_b"d,)_(ql_b,'C,)(r,_a,'dl).

(A20)

Having calculated the determinant Bf we can use this
result to evaluate the elemengg,r,...,u of the adjoint ma-
trix [Eq. (A9)]. We obtain

d+2
p= (;) [(zZ\y—b?)(Z\3—C?) —(zv —Db-©)?],
(A21)
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xy21Bar Bayost €d1203 . xyD1Bar By 2n). (Al6)
|
)\ d+2
q=(;) [(zh1— &%) (zZh3— %) —(zy—a-©)?],
(A22)

d+2
r:(E) [(2— @) (2h,— D) — (zw—a- b)?],
(A23)

d+2
S:(E) [(zv—b-c)(zy—a-c)—(zw—a-b)(z\3— )],
(A24)

d+2
t= (E) [(zw—a-b)(zv—b-¢)— (zZr,—b?)(zy—a-0)],
(A25)

)\ d+2
u=(—) [(zw—a-b)(zy—a-c)—(z\;—a?)(zv —b-¢)].
(A26)

The remaining elements of the adjoint are evaluated di-
rectly by a componentwise expansion of the equation
A"IAdj(A™Y) =det(A I, giving the expressions

&= —(pa+sh+to), (A27)
n=—(sa+qgb+uc), (A28)
{=—(tat+ub+rc), (A29)
eij:i(dew\_l)é\ij_aigj_biﬂj_cigj- (A30)

Now that we have evaluated all the components of the ad-
joint, we can evaluate the expression for the joint probability

distribution, P(m), in terms of these variables. Substituting
Eqg. (A9) into Eq. (A1) and usingA=Adj(A~1)/det(A™Y),
we find

1 F(m)
= ex - -
(zw)(d+3)/2(detAfl)1/2 2 dep\fl

P(m)

(A31)

where

F(m)=[mgfm/ +2& m'm(1)+25-m'm(2)
+2¢-m'm(3)+pm(1)%+gm(2)2+rm(3)2
+2sm(1)m(2)+2tm(1)m(3)+2um(2)m(3)].

(A32)
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3. Identities relating the components of the adjoint ofA ™!
to the determinant of A~1
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(B1), and using Eqs(A22), (A29), and (A42)—(A44), we
find the expression fof)(u,v) reduces to

In the calculation described in this paper, there are several

expressions which are frequently used to simplify the alge-
bra. These are all derived directly from the componentwise
expansion of the equatioh™ *Adj(A~1)=detA I, and are

listed here for ease of reference.
z
p(z\;—a%) +s(zw—a-b)+t(zy—a-c)= Xdetfl,
(A33)
s(zh;—a?)+q(zw—a-b)+u(zy—a-c)=0, (A34)
t(z\;—a%)+u(zw—a-b)+r(zy—a-c)=0, (A35)

p(zw—a-b)+s(zx,—b?) +t(zv—b-¢c)=0, (A36)

s(zw—a-b)+q(zx,—b?)+u(zv—b-c)= —detd 1,

t(zw—a-b)+u(zx,—b?) +r(zv—b-c)=0, (A38)
p(zy—a-c)+s(zv—b-c)+t(zx3—c?)=0, (A39)

s(zy—a-c)+q(zv—b-c)+u(zrn3—c?)=0, (A40)

z
t(zy—a-c)+u(zv—b-c)+r(zxz3—c?) = XdeiAfl.
(A41)

In addition, by using the definitions qf,q,...,u [from Egs.
(A21)—(A26)] and Egs.(A33), (A34), (A37), (A39), and
(A40), we can see that

(pg—s?)=

Y d+1

E) detA"Y(zn3—¢?), (A42)
d+1

(qr—u2)=<%) detA " Y(zn;—a?), (A43)

d+1
(us—qt)=(;) detdA " Y(zy—a-c). (A44)

APPENDIX B: CALCULATION OF THE INVERSE
AND DETERMINANT OF Q

—— Z ~ ~ ~
Qjj(u,0) = [A 6+ naiaj+ £(aic; + cia)) + veicy,

(B2)
where
A=1+2)\v/z, (B3)
-~ u?
w=—=(zZ\3—¢c?), (B4)
q
- u?
i=— —(zy—a-o), (B5)
q
VZT(Z)\l—aZ)'FZ)\S_CZ, (B6)
[ g\d+2
q=(x) 4= (201~ 8)(2hs— )~ (2y-a: )2
(B7)

1. Determinant of Q(u,v)

The determinant of the matri® (u,v) is calculated by
evaluating the product of itd eigenvalues. Any vector or-
thogonal to botha andc will have eigenvalueA/\, so we
need only calculate the two remaining eigenvalues, which
are associated with the eigenvectors which lie in the plane
spanned bya andc. The eigenvalue equation for these two
may be written as

Qjj(aj+yc;) = B(aj+ yc). (B8)
We can substitute fof2(u,v) from Eq. (B1) and complete
the sum over the indek; by equating the coefficients @t
andc; we then obtain two simultaneous equations foand
v, given by

z . ~ -
B= X[A+’“a2+ £a-c+ y(pa-ct+écd)], (B9)

,8‘}’: ;[EaZ_i_;a.c—i— 'y(A +Ea'C+7/C2)]. (BlO)

In this appendix, the expressions for the determinant an@" eliminatingy between these two equations, we have a
inverse of the matrix), which are required for the comple- duadratic equation i, from which we extract the product
tion of the integrals in Eqsi47)—(50), are calculated. The gf the two roots of the quadrati@-. . This product is given

matrix Q(U,v) is defined by

~ 1 ([ mn (PA=S) . ~,
Qij(u’v):deﬁfl\ ij = q + q h|h](u _l)
+205;, (B1)

where h, , and 6 are defined by EQgs(38), (A27), and
(A30), respectively. Substituting foh, » and 6 into Eq.

Yy

z\? .
B+ﬁ:<x) A(U,U), (Bll)

where

A(U,0)=(A+Ea-c+vc?) (A + pad+Ea-c) — (€a+va-c)

X (pa-c+ &c?). (B12)
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To simplify this expression we expand the brackets on the 54 4 An+B(A+nal+Fa-c)+C( ra-c+£2) =0
right-hand side, and use Eq®&4)—(B7); after some algebra, (@a),  Au+BA+ua+ca-c)+Clu ¢ )(51’7)
Eqg. (B12) reduces to
- O(aicy), AE+C(A+ual+ta-c)+D(na-c+éc?) =0,
AZ)\g_(A_l)C2> Az\3u? K (B18)
(

25— 23— %) O(ciay), AE+B(Ea?+7va-c)+C(A+Ea-c+3c2)=0,

e - (B19)
A2 ey T @ a)
q

A(D,E)=A(

O(cicy), Av+C(£a®+va-c)+D(A+ZEa-c+vc?)=0.
(B13 (B20)

. . . Since we have one more equation than we require to deter-
We recall that the remaining eigenvectors all have the eigenyine the solutions fod. B. C. andD. we discard one equa-

valuezA/\, and therefore the product of all the eigenvaluesijon and check for consistency later. Solving E¢B16),

which is equal to the determinant, is given by (B17), (B18), and(B20) simultaneously, and using Eq&7)
,\d and(B13) to simplify the results, we find, after some algebra,
dem:z\“(X A(UD). (B14)  that
A=A"1, (B21)
2. Inverse of Q(U,v) U2
o . ~ - . B=———[Az\3—(A-1)¢], (B22)
We begin to find the inverse d2(u,v) by defining the AqA
variablesA, B, C, andD by the equation -,
. A C=—=—[Azy—(A-1)a-c], (B23)
Qij :E(A(Sij+Baiaj+C(aiCj+Ciaj)+DCiCj). AqA
(BlS) GZ (TJZ_ 1)
. . . . 4 D=———[Az\;— (A— D&%+ —.
This must satisfy the identity);; ;"= &y . Hence, by ex- AgA A(zr3—C?)
panding this equation and equating coefficients, we obtain (B24)

the set of simultaneous equations given below: - .
q 9 Substituting these results back into E§15), we see that the

0(1), AA=1, (B16) inverse ofQ(u,v) is given by

A A(U?-1) DZA N1
7 ij+m+ﬁ[ zy—(A—1Da-c](aici+cia)

u2

- ~—A{[Az)\3— (A—1)PJaa;+[Azh;— (A—1)a%[cici}|. (B25)
q

This expression may be simplified considerably by the introduction of a new variable. If we Hdfinéhe equation
ki=[Az)\3—(A—1)cz]ai—[Azy—(A—1)a'c]c]-, (B26)

then Eq.(B25) may be rewritten as

Ql—L( Sii— CiC; B u?kik; ) (B27)
TOAZLTY (A (A-DP] GA[AZA—(A-1]6))

APPENDIX C: CONTRACTION OVER THE i AND j INDICES

In this appendix we calculate a nonindexed expression for

M

n n=1 0"Vi071/j

i]
n

e
ﬁVian

(CY

"

where:
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Fau. 8ij 9%
= = (C2
widvi|, dm(zng—c)[QA(L,0]"2 midvi|
921 1 9% = _ 071w
vl = f P LI (<)
Ividvi|,  m(zhg—c?) idvi|, Jo T AGTDRQA(1p)]Y2
921l k(0).cs;; 9
| = ( )2 = 172 - (C4
Ividvi|, dmhg(zh3—c*)[qA(1,0)]Y2 Ividv; "
9211 3 z fx dov )
vl m(zng-)Jo AP[GA(LE)] R vy |
.- - -
X( k().cQ;Y(1D) +)\(z)\3—c2)[ki(v)cj+cikj(v)]) -
[AZA3—(A—1)E] ZAzhg— (A —1)c2?

ands=(z/\)%*2s, s being defined by Eq(A24).

To obtain such an expression, we first evaluate the sum of the four expressions given §2Eg<5), and then contract
this expression over the free indiceandj.

To simplify these expressions we need to calculate the second derivagvesihg azb/aviav,- | ,=0 [from Eq.(A8)], and
Eq. (A24), we find that

s 2

(9Vi{9Vj

) | )
"

= —a. — _ 2
Z((Zy aC) aVi&Vj‘ (Z)\g ¢ ){9Vi(9Vj
I I3

After substituting fork and the second derivative @f (from equations(B26) and (C6) respectively, into equations
(C2-(C5), we may combine the resulting expressions to obtain:

9w

P +11) N
3(7Vi(911j
M

(9Vi(9Vj

_ Z(Sij 52U
mdna[GA(L,0]%2| Y amay,

) , (C7)
"

"

(1 +1)) :_jw dv Ak(@)ici+cik(®);] % | L IAQSNLE) yR v | | Jw
vidvy |, o AYQA(10)]Y3| [Azhg— (A —1)c?)? avio’?vj‘ﬂ AT Ng dvidy P2 '
(C8)
where
e B(Azy—(A—l)a-c :l+(A—1)(yc2—)\3a~c) 9
Y Az ;= (A—1)c y[AzZNz—(A—1)c?]

Before attempting to calculate the sum in E2¢), we manipulate Eq(C8) so that part of the integral can be completed
exactly. This will simplify the algebra greatly, since the exactly integrable term if@R®).will cancel the contribution to the
sum from Eq.(C7).

We define a new variabl#;; by the equation
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073(15) =~ - —tii_|. (C10
AT qaaw))
on comparing this with EqB25), we find
Vii=[Az\z— (A—1)Plag—[Azy— (A —-1)a-cl(aic;+a;c) +[Az\;— (A—1)a’]cic; . (C1)
Substituting forR anin]l from Eqgs.(C9) and(C10), Eqg. (C8) can be written as
PO+ | )\fw dv [k(v)icj+cik(v)] % (A—1)(yc®—N3a:0)8; &%
oy |, mJo AYQA (LY )| [Azhg— (A—1)¢?]? IWidvy |

N[AZNg— (A—1)c?] Ividyj ;

B ‘I’U E &ZU B Jw (012)
aA(l;{;) )\3 (9Vi(91/j “ (9Vi(91/]' “ '
where
o My v | Pw fw dv (C13
7 | N3 o vyl , aviavjlﬂ 0 AYQA(10)]¥2
We now define a second new varialf)eby the equation
A(1p)=A%A(1,0[1-Q(v)], (C14
and, using Eq(B13), we find that
_ A(A-1)z(\zaf—2ya-c+\ &) — (A—1)*(&cP—a- ¢?) 15
A?Z2(N1h3—y?) '

On substituting forA (1,0) from Eq. (C14) into Eq.(C13), and expanding the expression<{DQ) 2 using the binomial
theorem, we find that

_)\5” /l (92U ‘ (92W ‘ )J’m d;

e - INCEE "l C16
7[GA(L,0]Y2\ N awidv| , dviavj| | Jo Al@+212 mzzl Q (C16

3 NIk

Hence, using’ 5 A ~(9722=z/(\d), and inserting Eq(C7) in the expression fos, we find that Eq(C16) reduces to

Ao 2 2 B R (s P +11)
oo _ M y v | Pw f E 2 | om (I +13 _ €17
w[qA(l,O)]”Z )\3 071/i(91/]' u &Vio"Vj “ 0 A (d+2)/2, 4= o O’)Vi(%/j .
Next, substituting Eq(C17) into Eq.(C12 and using Eq(C1), we find that
2 w 1
| - ~}\§ij /zf d 2/2E 2 |qQn
wiovil,  a[qA(L,0]¥? o AT |

(A=1)(yc®=\za:0)8; %
N[ AZNg—(A=1)¢?] idvj|

)

[k(v)ic;+cik(v);] v
[AZ\3— (A —1)c?]? dvidv; .

A J'“’ dv
m(qA(1,0)¥2)0 AdT22(1 — Q)12

W

i yR %
&viﬁvj

AZGA(1,0(1-Q) | Ns dwdvy|

(C19
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Before we start the contraction of E@C18 over the in- \I,,_(;)&, = Az(\ 82— 2ya.ct \,?)
dicesi andj it is convenient to derive some useful results. RN !
First, we calculate the derivatives of and w [from Egs. —2(A—-1)(a°c?—a-c?), (C24)
(A8)]; these are given by
192U _ CiCj Uéij C19 5 CZ
v dv; |7 2D(tp+ 7)) (€19 . o = - Y W5
» ” Yoo, . \Z%v, 2D(tz*7) o
Fw a;q W5|J (AZ)\g_(A_l)Cz) 2
dvidvi| | 22w 2D(t;+ 1) (C20 - 725 (ac®—a-c?), (C2H
Hp " ®
(From this point on, we will use the notatiar), andw,, to
represeny andw evaluatedr= u). Using these equations
together with Eqs(B26) and(C11), we evaluate the follow- Pw a2 w,
ing expressions: 47 i =\ 22w 2D+ 7 Wi 6ij
I "
2 AzZN;—(A—1)a°
5, v :< c B v,d , 21 _[ 1 2( ) ](azcz_a_cz). (C26
(71/i(91/j “ ZZUM 2D(t2+7') A WM
5. F*w _ a B w,d (C22 Finally, we can complete the contraction ovieand|j by
Y oviov, u 2w, 2D(t;+ 7))’ substituting Eqs(C21)—(C26), together with Eqs(C9) and

(C19H) into Eq.(C18) to give

2

=2zA(\za-c—yc?)

[k(v)ic;+cik(v);]

Iv;dv; M 52|ij :_A wdzi ;
y 2 B v, Ividvy| zm)o =1
7, 2D(t7)’
(C23  where
|
- 1
> | 2]qn
B "\ m l( ¢ ud _( & w,d
LN yDYAA @22 5| 22, 2D(t+ 7)) 2w, 2D(ti+ 7)) [

T2

~ (A—1)(yc®—\3a-c) ( ¢ v,d
A (- yD) A1- QY Ay~ (A— 1)) | v, 2D(t2t7)

Ts

- 2z(\za-c—yc?) ( c? v,
AN YD1 QM AZN s~ (A~ 1)¢?? | 2, 2D(tat )

. z 4a’c?—a-c?) ([Azy—(A—l)a-c] [Azh;—(A—1)a?]
_A(d+6)/2()\1)\3_y2)3/2(1_Q)3/2 v N W

Ty

© “

 —[g@-2ya-ct )
A(d+4)/22()\1)\3— y2)3/2(1_ Q)3/2

YR
A3

¢,
Zu, 2D(L+7)

Ts

a? w,
2w, 2D(t1+7)

(C27)

(C29

(C29

(C30

(C3D)

(C32
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2(A—1)(a’°c®—a-c?)
A(d+6)/222()\1)\3—y2)3/2(1_ Q)3/2

YR
I

. (C33

6:

c? v, a? W,
z%v,, 2D(ty+ 1) z?w,, 2D(t;+ 1)
APPENDIX D

1. Large-d behavior of T,

In this section we will demonstrate that the lagjdehavior of the term3;, which are defined by Eq$C28—(C33), is

controlled, and hence that we are justified in applying the method of steepest descents anthg integrals in Eq(71). To
simplify the algebra within this section we define several new variables:

fm(Lowid), y=| 2t )" -
=A== G5 i)
fo=(1—x/2d), E=f,(79722exp — X
2 ’ 2 8Df,/’
t r? [r—(xt)"2u]?
— _ — (—d+2)/2 _
fs (1 t1+t2X’d)’ Es=fs exp(4D(t1+t2> DL +5)0 |

Therefore, the set of variables given by EG&8), with which the termsT; are defined, may be rewritten as

t2 d/4
Z:4Dt2f1, WM:’yf3f?_/2(t_> ES’
1

t, dr2 o t, dia o
e[ o) e oY

2t,y t,| 94 -
)\3:fd/2, a:tljtzf(lmz)/z(é) [r—(th)”sz]ES,

0, = 1,F9%E, o= — (xtp) VA DZE,

To investigate the largd-behavior of theT,,, we substitute these variables back into H@28—(C33 to obtain

1

7 \m E [ xp’ B ([r- ()Yl oo
LoD A1 ,2)12| 2, | 4DF, t,+t,| 2Df4(t;+ty) ’ (B2)
T,= —y(A- DI ( xp? ){xixz[ztzEs—<t1+t2>E]—2<xt2>1’2ﬁ~rEs} (D3)
2 4Dt2(t1+t2)A(d+2)/Z(l_,)/2)1/2(1_Q)l/2 4Df2 4DA_(A_l)f§Ld+2)/2X;LZE2 !
o 2410 P2 ( Xp? ){X;LZ[thEs_(t1+t2)E]_Z(th)m;l'rEs} 04
3= - ~ ’
Aoty +15) (1— ¥*)*A(1-Q)¥*1 4D T2 [4DA = (A= D)fi 22 p’E?)?
T,= Xty 2R (PP - pr?) y3Es( AR, e ]
YT 16DAA @O, 1 1,)2(1- 92 ¥1-Q)%2| T 2(t1+1,) T
2 (d+2)/2=2
vE Y2(A—1)t,f {0+ 2I2E2 .
_ I DA= r—(xt,) 212 |, D5
f3 (t1+t2)2 [ ( 2) "“] ( )
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2_7(1_72)—3/2f&d+2)/2 R_E X[ALZ - ~ ES [r_(xt2)1/2it]2_l
5 8D2A(d+4)/2(1_Q)3/2 2[2 4Df2 tl+t2 2D(t1+t2)f3
., Atyy?E2 ~ o AYEEs . -
X XEP o (o (= (Xt Vo = (e = (xty) Vo] | (06)

(A —1)xt,y3f 9 2E2E2( p2r2— pu-r2) [RE( X 12 ) =

[r—(xtp)*2p]? ”

6:4D3(t1-i-t2)2A(d+6)’2(1—7/2)3/2(1—Q)3/2 2t,14Df, T/ (t1+ty) | 2D(t1+1y)f5 ©7
where
(A—D)f{T 22T 4ty %S wor o AVEEs ., 127 272
- 4AD(1—’y2) (t1+t2)2[r_(Xt2) I"‘] - (t1+t2) [XtZM _(XtZ) Mr]+XE M
Xp(A=DF D2 EEN2 L
- AD t,1t, HTTRT) (D8)
(A= DEFT PRI p[ (ty+1,) E— 2t,E ]+ 2E(xty) Y2 1}

=1+ : (D9)

(t+t)[4DA — (A —1)f {9722 y2E2)

~ 1
A=1+2wl/d, and () are binomial coefficients.
Although the above expressions are rather complicated, we are only interested in determining whether thiedbay@sr
in each case is bounded. We notice that all the factgr& {)¥* cancel, and the only terms which have-dependent exponent

aref?2, 192 92 and A%2. However, the largek limit of each of these expressions is independend.diVe have
X X
lim £9/2= exp( — —) . lim f92= exp( — —) , (D10)
d—o 2 d—o 4
lim £92= exp( - tz—x) lim A ~92=exp(—w) (D11
d—o 3 2(tl+t2) , d—o

At large d therefore, all the term3, in Eq. (71), are dominated by the exponential factor [exdg(x)], and hence we may
complete the integral using the method of steepest descents.

2. 1d expansion

In this section we evaluate the leading order term in tlibeldpansion of each of the expressions Tar[given by Egs.
(D2)—(D7)] evaluated ap?=2D and = 7/2, wherey is the angle betweenand u. Since the final part of this calculation

requires the integration of these terms over the variabksdw, it is important to check that these integrals do not alter the
d dependence of higher orders in the expansion; this ensures that we have calculated the entire leading order contribution. If
we examine the expression for eathin turn, we see that, in the largklimit, every order in the H expansion will have an

exponential factor with a negativeandw exponent. The presence of these exponential factors ensures thagatitew
integrals will not alter thed dependence at any order in the expansion, so we only need to calculate the leading order terms.
We first evaluate the variablds Eg, R, andQ at the position of the minimum which controls the value of the integral in

Eq. (71) (= 2D, = w/2); then expanding to leading order irdigivesE=1, Es=1,R=1 and

2t2‘)’2r2
D(ty+1,)?

_ w exp(—x/2)[ ( 4titry° (D12

d(1—19?) LX (ty+ty)2

Using these results we can now calculate the terms up(tb) in the expansion of each expression Tgr[Egs. (D2)-
(D7)]; these are given by
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y(to—ty)exp —x/2)w exp(—w) ( At t,y? ) 2t,y2r2 (013
! 8Dt2(t1+t2)(1_ ’}/2)3/2 (tl+t2)2 D(t1+t2)2 ,
t,—t1)X exp —X/2)w exp(—Ww)
2:7( 22—l o . lg , (D14)
ADty(ty+1)(1— %)
(t,—t1)X(X—2)exp( — x/2)exp( — W)
3=7 2l o . 1/2F( ' (D15)
8Dty(t;+1)(1—v9)
s ~
— yrex exp( —x/2)exp( —w)
4= 2 2 24172 (D16)
8D“(ty+t)(1—v°)
17 exp( — x/2)exp( — W) ( 4t t, 92 2t,7%r2 | to—ty t,r? X ( . 4at3 017
> 8Dt,(1— y?)3?2 (t+1)2) Dty +1)2|[itts D(ty+t?2 2\~ (Li+t)?) ]
Te=0(1/d). (D18
[1] For a recent review of phase ordering kinetics, see A. J. Bray, [7] G. F. Mazenko, Phys. Rev. #9, 3717(1994.
Adv. Phys.43, 357 (1994. [81 G. F. Mazenko, e-print cond-mat/9711029; e-print
[2] T. Nagai and K. Kawasaki, Physica 234, 483 (1986; B. cond-mat/9803029.
Derrida, C. Godrehe, and I. Yekutieli, Phys. Rev. A4, 6241 [9] R. A. Wickham and G. F. Mazenko, Phys. Rev5h, 2300
(1991); A. J. Bray, B. Derrida, and C. Godtkee, Europhys. (1997).
Lett. 27, 175(1994; A. D. Rutenberg and A. J. Bray, Phys. [10] A. J. Bray and K. Humayun, Phys. Rev.4B, 1609(1993.
Rev. E50, 1900(1994). [11] Fong Liu and G. F. Mazenko, Phys. Rev.4B, 4656(1992.
[3] T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. L&%. [12] G. Porod, inSmall-Angle X-Ray Scatteripngdited by O. Glat-
1223(1982. ter and O. Kratky(Academic, London, 1983

[4] K. Humayun and A. J. Bray Phys. Rev.45, 10594(1992. [13] H. Tomita, Prog. Theor. Phyg2, 656(1984); 75, 482(1986.
[5] R. E. Blundell, A. J. Bray, and S. Sattler, Phys. Rev4& [14] S. M. Allen and J. W. Cahn, Acta Metal27, 1085(1979.
2476 (1993. [15] G. F. Mazenko, Phys. Rev. Le@3, 1605(1989; Phys. Rev. B
[6] C. Yeung, Y. Oono, and A. Shinozaki, Phys. Rev4% 2693 42, 4487(1990; 43, 5747(199)).
(1994. [16] A. J. Bray and K. Humayun, Phys. Rev.&, 9 (1993.



