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Perturbative corrections to the Ohta-Jasnow-Kawasaki theory of phase-ordering dynamics

C. L. Emmott
Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

~Received 12 May 1998!

A perturbation expansion is considered about the Ohta-Jasnow-Kawasaki~OJK! theory of phase-ordering
dynamics, which is an approximate theory describing the coarsening dynamics of a system with a noncon-
served scalar order parameter. In this calculation the nonlinear terms neglected in the OJK equation for the
evolution of the auxiliary field are reinstated and treated as a perturbation to the linearized equation. The first
order correction term to the pair correlation function is calculated in the large-d limit, and found to be of order
1/d2. @S1063-651X~98!07011-1#

PACS number~s!: 64.60.Cn, 82.20.Mj, 05.70.Ln
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I. INTRODUCTION

When a system is quenched from a high-temperature,
mogeneous phase into a two-phase region, domains o
equilibrium phases form and evolve with time. If the ord
parameter is nonconserved, then the coarsening dynamic
modelled by the time-dependent Ginzburg-Landau~TDGL!
equation@1#.

In one dimension this system is exactly soluble@2#, but
due to the nonlinear nature of the TDGL equation, no ex
solutions are available for a general number of dimensio
so we must rely on approximate theories. There are sev
approximate theories which describe the coarsening dyn
ics of this system. However, they all rely on a similar a
proach in which the order parameterf is replaced by a
smoothly varying auxiliary fieldm, which has the same sig
asf, and whose zeros define the domain walls. The equa
of motion ~TDGL! is then recast in terms of this auxiliar
field, and various approximations are made in order to m
the resulting equation soluble. In the Ohta-Jasnow-Kawa
~OJK! @3# theory, this is achieved by replacing the nonline
terms by their spherical average, thus linearizing the eq
tion for the auxiliary field .

Comparison of the OJK results with simulation data@4#
have shown that this theory gives a very good description
the system. However, the approximation is uncontrolled,
it is unclear why this approach gives such accurate pre
tions. Furthermore, Blundell, Bray, and Sattler@5# pointed
out that by plotting (12Cf) against 1/Cf2, where

Cf5^f~x1r ,t !f~x,t !&, ~1!

Cf25
^@12f2~x1r ,t !#@12f2~x,t !#&

^12f2~x1r ,t !&^12f2~x,t !&
, ~2!

thereby removing any adjustable parameters, the OJK th
does not follow the simulation data as closely as previ
comparisons, using onlyCf , suggested. An obvious way t
examine this approximation is to treat the neglected non
ear terms as a perturbation to the linearized equation of
tion, and this is exactly the approach taken in this paper

This calculation has two main advantages: first, in O
theory the initial conditions are conventionally taken to
Gaussian; since the evolution equation is linear, this w
PRE 581063-651X/98/58~5!/5508~21!/$15.00
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ensure that the distribution for the auxiliary field at lat
times is also Gaussian. This feature of OJK theory has b
questioned by Yeung, Oono, and Shinozaki@6#. Their simu-
lations, which explicitly calculate the auxiliary field distribu
tion, gave results which are not exactly Gaussian, part
larly at small values of the auxiliary field. We note th
recently, in a series of papers, Mazenko@7,8#, and Wickham
and Mazenko@9# have presented an approximate theo
which goes beyond the Gaussian distribution.

Second, it was proposed by both Bray and Humayun@10#
and Liu and Mazenko@11# that the OJK approximation be
comes exact as the number of dimensions approaches i
ity. Evaluating the dimensional dependence of the first or
correction term enables this hypothesis to be tested.

The main result of this paper is that the first order corr
tion to the correlation function isO(1/d2), lending weight to
the assertion that the OJK theory becomes exact in an infi
number of dimensions. The exact form of the leading or
correction to the two-time correlation function,C1(r ,t1 ,t2),
is calculated in the large-d limit; this is found to obey both
Porod’s Law@12# and the Tomita sum rule@13#, with the
singular contribution in the correction term modifying th
amplitude of the Porod tail, and in the limitt1@t2, it is found
that the correction term is of exactly the same form as
zero order result. The complexity of the calculation, ho
ever, has so far prevented the evaluation of higher or
terms.

In Sec. II we present an outline of the OJK calculatio
which provides the starting point for the perturbation calc
lation. Then, in Sec. III, we proceed with a detailed descr
tion of the perturbation calculation. We conclude with
summary and discussion of the results.

II. OJK THEORY

Consider a system described by a nonconserved sc
order parameter. The evolution of this system following
rapid quench from a high-temperature homogeneous pha
a regime where there are two equilibrium phases is descr
by the TDGL equation

]f~x,t !

]t
52

dF@f#

df
, ~3!
5508 © 1998 The American Physical Society



l,

m
th

u
fe

g

s

of

th
d

cit

ld

tia

is
n
e

the

ill
, to
ate

the

on

s
p-

,

a-
ion,
is
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where F@f# is a Ginzburg-Landau free energy functiona
given by

F@f#5E ddx @ 1
2 u“fu21V~f!#. ~4!

V(f) is a potential whose minima define the equilibriu
values of the order parameter; the conventional choice in
case of a scalar order parameter isV(f)5(12f2)2/4. Note
that there is no noise term in this equation, hence the res
are only valid for quenches to temperatures where the ef
of thermal fluctuations is negligible.

Following the work of Ohta, Jasnow and Kawasaki@3#,
the scalar fieldf(r ,t) is replaced by a smoothly varyin
auxiliary field m(r ,t), where f(r ,t) and m(r ,t) have the
same sign. The zeros of the fieldm then define the position
of the domain walls, and the normaln̂ to a domain wall in
the direction of increasingf is given by

n̂5
“m

u“mu
. ~5!

Inserting this into the Allen-Cahn equation for the velocity
an interface@14#, v52K52“•n̂, whereK is the curvature
of the interface, we obtain

v5
1

u“muS 2“

2m1ninj

]2m

]xi]xj
D , ~6!

wherev is the speed of the interface in the direction ofn̂. We
now seek to obtain an evolution equation form(r ,t) by link-
ing the domain-wall velocity to the time dependence of
auxiliary field. The total time derivative of the auxiliary fiel
in a frame of reference moving at a velocityv is given by

dm

dt
5

]m

]t
1v•“m. ~7!

If this frame is moving with the interface velocity, thenv
5vn̂ and“m are parallel, and the total derivative ofm van-
ishes, implying that

]m~r ,t !

]t
52vu“mu. ~8!

We now substitute the expression for the interface velo
@from Eq. ~6!# into Eq. ~8! to obtain

]m

]t
5“

2m2ninj

]2m

]xi]xj
. ~9!

This is the time evolution equation for the auxiliary fie
obtained by OJK.

To make analytic progress, we now linearize this par
differential equation by replacingninj by its spherical aver-
aged i j /d. In this approximation, the evolution of the field
governed by a simple diffusion equation with diffusion co
stant D5121/d. To calculate the correlation function w
need to express the original order parameterf in terms of
the auxiliary field. In the thin wall limit this is given byf
5sgn(m), therefore,
e

lts
ct

e

y

l

-

C~r ,t1 ,t2!5^sgn@m~x1r ,t1!#sgn@m~x,t2!#&. ~10!

It is convenient to choose Gaussian initial conditions for
auxiliary field, with zero mean, and correlator

^m~x1r ,0!m~x,0!&5Dd~r !. ~11!

Since the evolution equation is linear, the auxiliary field w
then have a Gaussian distribution at all times. Therefore
calculate the correlation function we simply need to evalu
the joint probability distribution form(x1r ,t1)[m(1) and
m(x,t2)[m(2). This is given by

P@m~1!,m~2!#5
1

2p@S~1!S~2!~12g2!#1/2

3expF2
1

2~12g2! S m~1!2

S~1!
1

m~2!2

S~2!

22g
m~1!m~2!

@S~1!S~2!#1/2D G , ~12!

whereg is the normalized correlator:

g5
^m~1!m~2!&

^m~1!2&1/2^m~2!2&1/2
~13!

5S 4t1t2

~ t11t2!2D d/4

expF2
r2

4D~ t11t2!G , ~14!

andS(1)5^m(1)2& andS(2)5^m(2)2& @1#. Completion of
the average over the fieldm yields the final OJK result for
the correlation function, and is given by

C~r ,t1 ,t2!5
2

p
sin21g. ~15!

We note that this result only has a trivial dependence on
dimensiond, through the diffusion constantD5121/d.

III. PERTURBATION THEORY

The starting point for this calculation is the OJK equati
for the evolution of the auxiliary fieldm(x,t) ~derived in
Sec. II!,

]m

]t
5“

2m2ninj

]2m

]xi]xj
, ~16!

where n5“m/u“mu. As noted in Sec. II, this equation i
highly nonlinear, and to make analytic progress OJK a
proximated the nonlinear termninj by its spherical average
d i j /d, reducing Eq.~16! to the diffusion equation with dif-
fusion constantD5121/d.

In this calculation, the terms dropped in this approxim
tion are treated as a perturbation to the diffusion equat
and the first order correction to the correlation function
calculated. Therefore the equation we wish to solve is

]m

]t
5D“

2m2lS ninj2
d i j

d D ]2m

]xi]xj
, ~17!
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wherel is a small perturbation parameter.
The solution of Eq.~17! can be expressed as a pow

series in l, m(r ,t)5m01lm11O(l2); substituting this
ns
back into Eq. ~17! and equating orders ofl gives two
coupled partial differential equations form0 andm1, the so-
lutions to which are given by
the
m0~r ,t !5E ddmG~r2m,t !m0~m,0!, ~18!

m1~r ,t !52E
0

t

dtE ddmG~r2m,t2t!S ] im0~m,t!] jm0~m,t!

u“m0~m,t!u2
2

d i j

d D ]2m0~m,t!

]m i]m j
, ~19!

whereG(m2r ,t2t) is the Green’s function for the diffusion equation and is given by

G~r ,t !5
1

~4pDt !d/2
expF2

r2

4Dt G , ~20!

and] im0(m,t)[@]m0(m,t)#/]m i .
In the thin wall limit the order parameter is related to the auxiliary field by the equationf5sgn(m). Hence, by using the

integral representation of sgn(m) and expanding the expression for the correlation function inl, we find that

C~r ,t1 ,t2!5^f~x1r ,t1!f~x,t2!&5C0~r ,t1 ,t2!1lC1~r ,t1 ,t2!1O~l2!, ~21!

where

C0~r ,t1 ,t2!5^sgn@m0~x1r ,t1!#sgn@m0~x,t2!#&, ~22!

C1~r ,t1 ,t2!52$^sgn@m0~x1r ,t1!#d@m0~x,t2!#m1~x,t2!&1^sgn@m0~x,t2!#d@m0~x1r ,t1!#m1~x1r ,t1!&%. ~23!

If we defineC̃1(r ,t1 ,t2) by

C̃1~r ,t1 ,t2!52^sgn@m0~x1r ,t1!#d@m0~x,t2!#m1~x,t2!&, ~24!

then the first order correction to the correlation function is given by

C1~r ,t1 ,t2!5C̃1~r ,t1 ,t2!1C̃1~2r ,t2 ,t1!. ~25!

Since the two terms on the right-hand side of the expression forC1(r ,t1 ,t2) @Eq. ~25!# differ only in that t1→t2 and r
→2r , we will only deal with one of these averaged terms,C̃1(r ,t1 ,t2), evaluating the complete expression at the end of
calculation.

Substituting form1 from Eq. ~19! into Eq. ~24!, we obtain the following expression forC̃1(r ,t1 ,t2),

C̃1~r ,t1 ,t2!522E
0

t2
dtE ddmG~x2m,t22t!K sgn@m0~x1r ,t1!#S ] im0~m,t!] jm0~m,t!

u“m0~m,t!u2
2

d i j

d D d@m0~x,t2!#
]2m0~m,t!

]m i]m j
L .

~26!
g

We now impose the conventional Gaussian initial conditio
with a zero mean, and a correlator given by

^m~x1r ,0!m~x,0!&5Dd~r !. ~27!

The average on the right-hand side of Eq.~26! can be evalu-
ated if we extract the differential operator]2/]m i]m i from
the average by defining a new spatial variablen. Equation
~26! can then be written as

C̃1~r ,t1 ,t2!522E
0

t2
dtE ddmG~x2m,t22t!

]2I i j

]n i]n j
U

n5m

,

~28!
,where

I i j 5K S ] im0~m,t!] jm0~m,t!

u“m0~m,t!u2
2

d i j

d D
3sgn@m0~x1r ,t1!#m0~n,t!d@m0~x,t2!#L . ~29!

The ensemble average in Eq.~29! can now be completed
by using the joint probability distribution connectin
the variables m0(x1r ,t1), m0(x,t2), m0(n,t), and
@]m0(m,t)#/]m i .
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For simplicity, at this point we introduce a contracte
notation:

]m0~m,t!

]m i
→mi8 , m0~n,t!→m~2!, ~30!

m0~x1r ,t1!→m~1!, m0~x,t2!→m~3!, ~31!

and define the vectorm̃ by

m̃5@m18 ,m28 ,m38 ,...,md8 ,m~1!,m~2!,m~3!#. ~32!

The joint probability distribution for the components of th
vector is then given by

P~m̃!5
1

~2p!~d13!/2~detA21!1/2
expS 2

1

2
m̃iAi j m̃j D ,

~33!

whereAi j
215^m̃im̃j&. P(m̃) is evaluated in Appendix A, and

is given by

P~m̃!5
1

~2p!~d13!/2~detA21!1/2
expF2

F~m̃!

2detA21G ,

~34!

whereF(m̃) is given by Eq.~A32!.
Equation~29! may therefore be written in the form

I i j 5E ddm8E
2`

`

dm~1!E
2`

`

dm~2!E
2`

`

dm~3!P~m̃!

3S mi8mj8

um8u2
2

d i j

d D sgn@m~1!#m~2!d@m~3!#. ~35!

The functionC̃1(r ,t1 ,t2) defined by Eq.~28! is evaluated
in three main steps. First, the expression forI i j @Eq. ~35!# is
evaluated. This result is then differentiated to obta
]2I i j /]n i]n j un5m , and, finally, this expression is substitute
back into Eq.~28! and the remaining integrals are complete
 .

To evaluate Eq.~35!, we must complete the integrals ove
m̃. The integral overm(3) is trivial; on settingm(3) to zero
in Eq. ~35!, we see that the integral overm(2) can be re-
duced to a Gaussian by completing the square in the ex
nent of the probability density function,2F(m̃)/2 detA21.
For simplicity we deal with the expression forF(m̃) @Eq.
~A32!# first. Completing the square using the substituti
m8(2)5m(2)1@sm(1)1h•m8#/q in m(2) gives

F~m̃!5mk8S ukl2
hkh l

q Dml81
~pq2s2!

q
m~1!2

22
~sh2qj!

q
•m8m~1!1qm8~2!2. ~36!

This may be simplified further by substituting forj andh in
the factorsh2qj, from Eqs.~A27! and~A28!, respectively,
to give

sh2qj5~pq2s2!a2~us2qt!c5~pq2s2!h, ~37!

where this equation is used to define the vectorh. Using Eqs.
~A42! and ~A44!, h may then be written as

h5a2S us2qt

pq2s2D c5a2S zy2a–c

zl32c2D c. ~38!

Substituting Eq.~37! back into Eq.~36!, F(m̃) reduces to

F~m̃!5mk8S ukl2
hkh l

q Dml8

1
~pq2s2!

q
@m~1!222h•m,m~1!#1qm8~2!2.

~39!

On substituting Eqs.~34! and~39! back into Eq.~35! we find
that them(2) integral is now in the form of a Gaussian, o
completion of which,I i j simplifies to
the
tial,

rately;
I i j 5
2~2p!2~d12!/2

q3/2 E ddm8S mi8mj8

um8u2
2

d i j

d D expF2
1

2detA21
mk8S ukl2

hkh l

q Dml8G
3E

2`

`

dm~1! sgn@m~1!#~sm~1!1h•m8!expF2
~pq2s2!

2qdetA21
@m~1!222h•m8m~1!#G . ~40!

We now manipulate this expression into a form in which them8 integral can be completed. First we need to remove
um8u2 term from the denominator; this can be achieved by rewriting the denominator as an integral over an exponen

1

um8u2
5E

0

`

dṽ exp@2 ṽum8u2#. ~41!

The second step is to manipulate them(1) dependence so that the exponent in the complete expression forI i j can be written
in the formm8TVm8, whereV is a d3d matrix to be determined later.

Due to the presence of the sgn@m(1)# function, the positive and negative ranges of the integral must be treated sepa
in each case we complete the square in the exponent using the substitutionũ5@m(1)2h•m8#/h•m8. The antisymmetric
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contribution to them(1) integral in Eq.~40! may be evaluated directly, and the symmetric contribution reduces to a
proportional to an error function. This integral, therefore, reduces to

E dm~1!sgn@m~1!#@sm~1!1h•m8!expF2
~pq2s2!

2qdetA21
@m~1!222h•m8m~1!#G

5a1bklmk8ml8E
0

1

dũ expF2
~pq2s2!

2qdetA21
~h•m8!2~ ũ221!G , ~42!

where

a5
2qsdetA21

~pq2s2!

and

bkl52hk~h l1shl !. ~43!

Substituting Eqs.~41! and ~42! back into the expression forI i j @Eq. ~40!#, we obtain

I i j 5
1

~2p!~d12!/2q3/2E ddm8 expF2
1

2detA21
me8S ue f2

heh f

q Dmf8G S d i j

d
2mi8mj8E

0

`

dṽ exp@2 ṽum8u2# D
3S a1bklmk8ml8E

0

1

dũ expF2
~pq2s2!

2q detA21
~h•m8!2~ ũ221!G D . ~44!

We are now in a position to define the general matrixV(ũ,ṽ) referred to earlier:

V i j ~ ũ,ṽ !5
1

detA21S u i j 2
h ih j

q
1

~pq2s2!

q
hihj~ ũ221! D12ṽd i j . ~45!

By expanding the right-hand side of Eq.~44!, we see that the exponent of each contribution is given by the generald3d

matrix V(ũ,ṽ), evaluated at different values ofũ and ṽ. Equation~44! can therefore be written as the sum of four stand
integrals,

I i j 5 (
n51

4

I n
i j , ~46!

where

I 1
i j 5

ad i j

d~2p!~d12!/2q3/2E ddm8expF2
1

2
m8TV~1,0!m8G5

ad i j

2pdq3/2@detV~1,0!#1/2
, ~47!

I 2
i j 52

a

~2p!~d12!/2q3/2E0

`

dṽE ddm8mi8mj8exp852
a

2pq3/2E0

`

dṽ
V i j

21~1,ṽ !

@detV~1,ṽ !#1/2
, ~48!

I 3
i j 5

bkld i j

d~2p!~d12!/2q3/2E0

1

dũE ddm8mk8ml8expF2
1

2
m8TV~ ũ,0!m8G5

d i j bkl

2pdq3/2E0

1

dũ
Vkl

21~ ũ,0!

@detV~ ũ,0!#1/2
, ~49!

I 4
i j 52

bkl

~2p!~d12!/2q3/2E0

`

dṽE
0

1

dũE ddm8mi8mj8mk8ml8expF2
1

2
m8TV~ ũ,ṽ !m8G

52
bkl

2pq3/2E0

`

dṽE
0

1

dũ
1

@detV~ ũ,ṽ !#1/2
„V i j

21~ ũ,ṽ !Vkl
21~ ũ,ṽ !1V ik

21~ ũ,ṽ !V j l
21~ ũ,ṽ !1V i l

21~ ũ,ṽ !V jk
21~ ũ,ṽ !…. ~50!

Details of the calculation of the inverse and determinant ofV(ũ,ṽ) are supplied in Appendix B, and are given by equatio
~B27!–~B14!.
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At this point we can calculate]2I i j /]n i]n j un5m , which
once completed will be substituted into Eq.~28!. First, we
notice that the only variables which depend onn in the ex-
pressions for theI n

i j area andbkl @defined in Eq.~43!#. Our
first step, therefore, is to simplify these quantities and th
calculate their derivatives.

Inserting Eq.~A42! into the expression fora, and differ-
entiating, we find

]2a

]n i]n j
U

m

5
2q

~zl32c2!
S z

l D d11 ]2s

]n i]n j
U

m

, ~51!

~From this point on we will use the notation]2a/]n i]n j um to
indicate that we are evaluating the differential atn5m.! To
simplify bkl , we substitute forh andh from Eqs.~38! and
~A28! respectively; using Eq.~A40!, we find that

bkl5
2q

zl32c2 Fak2S zy2a•c

zl32c2D ckG
3@~zv2b–c!cl2~zl32c2!bl #. ~52!

We now note that, from the definition ofb @Eq. ~A8!#,
]2b/]n i]n j um50, so the derivative ofbkl is given by
he

ra
n

]2bkl

]n i]n j
U

m

5
2qz

~zl32c2!

]2v
]n i]n j

U
m

hkcl . ~53!

Differentiating Eqs.~47!–~50! and using Eqs.~B14!, ~51!,
and ~53!, we obtain the following expressions for th
]2I n

i j /]n i]n j um :

]2I 1
i j

]n i]n j
U

m

5
d i j

dp~zl32c2!@ q̃D~1,0!#1/2S z

l D d12 ]2s

]n i]n j
U

m

,

~54!

]2I 2
i j

]n i]n j
U

m

5
21

p~zl32c2!
S z

l D d12

]

2s
]n i]n j U

m

3E
0

` dṽV i j
21~1,ṽ !

L~d22!/2@ q̃D~1,ṽ !#1/2
, ~55!

]2I 3
i j

]n i]n j
U

m

5
z2d i j hkcl

dpl~zl32c2!

]2v
]n i]n j

U
m

E
0

1

dũ
Vkl

21~ ũ,0!

@ q̃D~ ũ,0!#1/2
,

~56!
]2I 4
i j

]n i]n j
U

m

2z2hkcl

pl~zl32c2!

]2v
]n i]n j

U
m

E
0

`

dṽE
0

1

dũ
1

L~d22!/2@ q̃D~ ũ,ṽ !#1/2
@V i j

21~ ũ,ṽ !Vkl
21~ ũ,ṽ !1V ik

21~ ũ,ṽ !V j l
21~ ũ,ṽ !

1V i l
21~ ũ,ṽ !V jk

21~ ũ,ṽ !#. ~57!
At this point we shall pause to give an overview of t
simplification of Eqs.~54!–~57!. We first consider Eqs.~56!
and ~57!; on completing the contraction over thek and l

indices, we obtain expressions in which theũ integration
may be completed exactly. We then complete the cont
tions over thei and j indices in the expression

]2I i j

]n i]n j
U

m

5 (
n51

4 ]2I n
i j

]n i]n j
U

m

, ~58!

and substitute this back into the expression forC̃1(r ,t1 ,t2)
@Eq. ~28!#.
c-

Before we complete the contraction over thek and l indi-
ces in Eqs.~56! and~57!, we will derive some results which
will be used later. Using the definitions ofh, D, k, and q̃
@Eqs.~38!, ~B13!, ~B26!, and~B7!, respectively#, we find

k~ ṽ !•h5
q̃

ũ2FD~ ũ,ṽ !2LS Lzl32~L21!c2

zl32c2 D G . ~59!

Using Eq.~59! together with the definitions ofV21(ũ,ṽ), h
and k @Eqs. ~B27!, ~38! and ~B26!, respectively# we also
obtain:
V i j
21~ ũ,ṽ !hj5

lki~ ṽ !

z~zl32c2!D~ ũ,ṽ !
, ~60!

V i j
21~ ũ,ṽ !cj5

l

z@Lzl32~L21!c2#
S ~zl32c2!cj2

k~ ṽ !•cũ 2

Lq̃D~ ũ,ṽ !
kj~ ṽ !D . ~61!

Substituting Eqs.~60! and~61! into Eqs.~56! and~57!, we can therefore complete the contractions over thek and l indices to
obtain:
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]2I 3
i j

]n i]n j
U

m

5
zk~0!•cd i j

dpq̃1/2~zl32c2!2

]2v
]n i]n j

U
m

E
0

1 dũ

D~ ũ,0!3/2
, ~62!

]2I 4
i j

]n i]n j
U

m

52
z

pq̃1/2~zl32c2!2

]2v
]n i]n j

U
m

E
0

`E
0

1 dũdṽ

L~d22!/2D~ ũ,ṽ !3/2Flk~ ṽ !•c

Lz S d i j 2
cicj

Lzl32~L21!c2

2
3ki~ ṽ !kj~ ṽ !ũ2

q̃D~ ũ,ṽ !@Lzl32~L21!c2#
D 1

l~zl32c2!@cikj~ ṽ !1cjki~ ṽ !#

z@Lzl32~L21!c2#
G . ~63!

Equations~62! and~63! are now in a form in which we can complete theũ integration. We see that the only integrals requir
are*0

1dũD(ũ,ṽ)23/2 and*0
1dũũ 2D(ũ,ṽ)25/2; sinceD(ũ,ṽ) @which is defined by Eq.~B13!# is of the formg1dũ2, these

integrals overũ may easily be completed to give

E
0

1

dũ
1

@D~ ũ,ṽ !#3/2
5

~zl32c2!

L@Lzl32~L21!c2#@D~1,ṽ !#1/2
, ~64!

E
0

1

dũ
ũ 2

@D~ ũ,ṽ !#5/2
5

~zl32c2!

3L@Lzl32~L21!c2#@D~1,ṽ !#3/2
, ~65!

where q̃D(1,ṽ)5L2z2(l1l32y2)2L(L21)z(l3a222ya–c1l1c2)1(L21)2(a2c22a•c2). We can therefore substitut
Eqs.~64! and ~65! into the right-hand side of Eqs.~62! and ~63! to obtain

]2I 3
i j

]n i]n j
U

m

5
k~0!•cd i j

dpl3~zl32c2!@ q̃D~1,0!#1/2

]2v
]n i]n j

U
m

, ~66!

]2I 4
i j

]n i]n j
U

m

52
z

p~zl32c2!

]2v
]n i]n j

U
m

E
0

` dṽ

Ld/2@ q̃D~1,ṽ !#1/2S k~ ṽ !•cV i j
21~1,ṽ !

@Lzl32~L21!c2#
1

l~zl32c2!@ki~ ṽ !cj1cikj~ ṽ !#

z@Lzl32~L21!c2#2 D . ~67!
dix

-
ari-
est
rit-

ter
We now substitute Eqs.~54!, ~55!, ~66!, and ~67! into Eq.
~58!, and complete the contraction over thei and j indices.
The details of this calculation are contained within Appen
C. Following the contraction over thei and j indices, Eq.
~58! reduces to

]2I i j

]n i]n j
U

m

52
l

pzE0

`

dṽ (
n51

6

Tn , ~68!

where the termsTn are defined by Eqs.~C28!–~C33!. Sub-
stituting Eqs.~20! and~68! into Eq.~28!, where without loss
of generality we can setx50, we obtain the following ex-
pression forC̃1(r ,t1 ,t2):

C̃1~r ,t1 ,t2!5E
0

t2
dtE

0

`

dṽE ddm

2l (
n51

6

Tn

pz~4pD~ t22t!!d/2

3expS 2
m2

4D~ t22t! D . ~69!
The spatial integral overm may be completed by trans
forming to spherical polars and choosing a change of v
ables which allows the integral to be completed by steep
descents. In spherical polars the spatial integral may be w
ten as

E ddm5
2~p!~d21!/2

GS d21

2 D E
0

`

dm md21E
0

p

dc~sinc!d22.

~70!

We notice that each expression forTn @Eqs. ~C28!-~C33!#
contains the factorL2d/25(112l ṽ/z)2d/2; we therefore
make the substitutionw̃5 ṽld/z, so that, in the large-d limit,
this factor reduces to an exponential inw̃. We also make the
additional substitutiont5t2(12x/d), and rescalem to m̂
5(xt2)21/2m. The form of thet substitution is chosen in the
expectation that the contribution to the integral from la
times will dominate the result. Equation~69! then reduces to
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C̃1~r ,t1 ,t2!5
4t2

p3/2d2GS d21

2 D S d

4D D d/2

3 (
n51

6 E
0

d

dxE
0

`

dw̃E
0

`dm̂

m̂
E

0

p dc

~sinc!2

3exp@2dg~m̂,c!#Tn , ~71!

whereg(m̂,c)5 (m̂2/4D) 2 ln(m̂ sinc).
Once the integral is in this form, them̂ and c integrals

can be completed in the large-d limit by steepest descents
Applying this limit does not represent a serious limitation
the calculation, since this is the regime of most interest
explained in Sec. I. In the limitd→`, provided the large-d
behavior of the termsTi is controlled~as demonstrated in
Appendix D 1!, the value of the integral is dominated by th
contribution from the neighborhood around the minima
the functiong(m̂,c).

Within the range of integration, the functiong(m̂,c) has a
global minimum atm̂5A2D and c5p/2. We can expand
the integrand to first order about this minimum, reducing
m̂ andc integrations in Eq.~71! into Gaussians, and giving

C̃1~r ,t1 ,t2!5
4t2 exp~2d/2!

~2D !1/2p3/2d2GS d21

2 D S d

2D d/2

3 (
n51

6 E
0

d

dxE
0

`

dw̃Tnum5A2D,c5p/2

3E
0

`

dm̂ expS 2d~m̂2A2D !2

2D
D

3E
0

p

dc expS 2d~c2p/2!2

2 D . ~72!

Since we are only interested in the first order correction
the correlation function, we use Stirling’s formula to eval
ate the leading order contribution from theg function, which
is given by

GS d21

2 D;
2~2p!1/2

d S d

2D d/2

exp~2d/2!. ~73!
s

f

e

o

On substituting Eq.~73! back into Eq.~72!, and completing
the Gaussian integrals, we find

C̃1~r ,t1 ,t2!5
2t2

pd2E
0

`E
0

`

dx dw̃(
n51

6

Tnum5A2D,c5p/2 .

~74!

Now all that remains is to calculate the leading order co
tribution from the integration overx andw̃ of the termsTn ,
evaluated atm5A2D andc5p/2. Each of the terms may b
expanded as a power series in 1/d, and in Appendix D 2 each
term is evaluated toO(1), giving

T15
g~ t22t1! exp~2x/2!w̃ exp~2w̃!

8Dt2~ t11t2!~12g2!3/2

3FxS 12
4t1t2g2

~ t11t2!2D1
2t2g2r2

D~ t11t2!2G , ~75!

T25
g~ t22t1!x exp~2x/2!w̃ exp~2w̃!

4Dt2~ t11t2!~12g2!1/2
, ~76!

T35
g~ t22t1!x~x22!exp~2x/2!exp~2w̃!

8Dt2~ t11t2!~12g2!1/2
, ~77!

T45
2gr2xexp~2x/2!exp~2w̃!

8D2~ t11t2!2~12g2!1/2
, ~78!

T55
2g exp~2x/2!exp~2w̃!

8Dt2~12g2!3/2

3FxS 12
4t1t2g2

~ t11t2!2D1
2t2g2r2

D~ t11t2!2G
3F t22t1

t11t2
2

t2r2

D~ t11t2!2
1

x

2 S 12
4t2

2

~ t11t2!2D G ,

~79!

T650. ~80!

We now complete thex andw̃ integrations of the expres
sions given in Eqs.~75!–~80!, finding
E
0

`E
0

`

dx dw̃ T15
g~ t22t1!

2Dt2~ t11t2!~12g2!3/2S 12
4t1t2g2

~ t11t2!2 1
t2g2r2

D~ t11t2!2D , ~81!

E
0

`E
0

`

dx dw̃ T25
g~ t22t1!

Dt2~ t11t2!~12g2!1/2
, ~82!

E
0

`E
0

`

dx dw̃ T35
g~ t22t1!

Dt2~ t11t2!~12g2!1/2
, ~83!
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E
0

`E
0

`

dx dw̃ T45
2gr2

2D2~ t11t2!2~12g2!1/2
, ~84!

E
0

`E
0

`

dx dw̃ T55
2g

2Dt2~12g2!3/2F S 12
4t2

2

~ t11t2!2D S 22
8t1t2g2

~ t11t2!2 1
t2g2r2

D~ t11t2!2D
1S t22t1

t11t2
2

t2r2

D~ t11t2!2D S 12
4t1t2g2

~ t11t2!2 1
t2g2r2

D~ t11t2!2D G , ~85!

E
0

`E
0

`

dx dw̃ T650. ~86!

On substituting Eqs.~81!–~86! into Eq. ~74!, we obtain

C̃1~r ,t1 ,t2!5
2g

Dpd2~12g2!3/2F S 12
4t1t2g2

~ t11t2!2D S 4t2
2

~ t11t2!2 21D 1
2~ t22t1!~12g2!

~ t11t2!
1

2t2
2~ t22t1!g2r2

D~ t11t2!4
1

t2
2g2r4

2D2~ t11t2!4G .

~87!

Finally, on substituting Eq.~87! back into Eq.~25!, we obtain the complete expression for the first order correction to
correlation function:

C1~r ,t1 ,t2!5
4g

Dpd2~12g2!3/2F S t12t2

t11t2
D 2S 12

4t1t2g2

~ t11t2!2 1
g2r2

D~ t11t2! D1
~ t1

21t2
2!g2r4

4D2~ t11t2!4G . ~88!

We now express our final result for the first order correction to the correlation function in the same form as the exa
result @Eq. ~15!#. In this form the correlation function is given by

C~r ,t1 ,t2!5
2

p
sin21$g@11lF~r ,t1 ,t2!#%, ~89!

where

F~r ,t1 ,t2!5
2

Dd2~12g2! F ~ t12t2!2

~ t11t2!2 S 12
4t1t2g2

~ t11t2!2 1
g2r2

D~ t11t2! D1
~ t1

21t2
2!g2r4

4D2~ t11t2!4G . ~90!
de

ct

u

ng

sult
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e
K
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We can clearly see from this expression that the first or
correction to the correlation function isO(1/d2), which lends
weight to the assertion that the OJK result becomes exa
an infinite-dimensional system.

Two special cases

We now evaluate this result in two special cases: at eq
times, and when the times are widely separated,t1@t2. At
equal times, the first order correction term is given by

C1~r ,t !5
1

8Dpd2 gS r

~Dt !1/2D , ~91!

where

g~x!5
x4exp~23x2/8!

@12exp~2x2/4!#3/2
. ~92!

This correction term clearly exhibits the expected scali
L;t1/2; the scaling functiong(x) is shown in Fig. 1.
r

in

al

,

Figure 2 shows a comparison of the zero order OJK re
@Eq. ~15!# with the perturbed result ford52,3 and 4 at equa
times; the functions have all been scaled so that they h
the same gradient at the origin. Although the result is o
valid for large d, the figure clearly demonstrates that th
perturbation will have the effect of lowering the exact OJ
result. This is discussed further in Sec. IV.

If we now expand Eq.~91! aboutr 50, we see that, for
small r ,

C1~r ,t !;
1

Dpd2

r

~Dt !1/2S 12
3r 2

16Dt
1

7r 4

512D2t2

1O@r 6/~Dt !3# D , ~93!

and hence the result obeys Porod’s Law@12# and the Tomita
sum rule@13#.

We now consider the case where the times are wid
separated. Ift1@t2, then Eq.~88! reduces to
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C1~r ,t1 ,t2!5
4

Dpd2S 4t2

t1
D d/4

expS 2
r2

4Dt1
D . ~94!

Comparing this to the conventional scaling form,

C1~r ,t1 ,t2!;S L2

L1
D l̄

hS r

L1
D , t1@t2 , ~95!

whereL1 andL2 are the characteristic lengths for the syste
at timest1 and t2, respectively, we find thatl̄5d/2, as ex-
pected. We also note that the leading order correction to
correlation function in this limit has exactly the same form
the zero order correlation function; from Eq.~15!, we have

C0~r ,t1 ,t2!5
2

pS 4t2

t1
D d/4

expS 2
r2

4Dt1
D . ~96!

IV. DISCUSSION

In this paper I have described a perturbation theory ap
cable to OJK theory in a system with an infinite number
dimensions and no noise. The leading order correction t
to the two-time correlation function has been calculated
treating the nonlinear terms in the OJK auxiliary-field ev
lution equation as a perturbation to the linearized equat
There are two separate motivations for this study. First, si
in conventional OJK theory, the evolution equation is line
and Gaussian initial conditions are imposed, it follows th
the distribution of the auxiliary field must be Gaussian at
times. This assumption, present in many of the approxim
theories, has been critically assessed by Yeung Oono,
Shinozaki@6#; they showed that the auxiliary-field distribu
tion measured directly from numerical simulations is not e
actly Gaussian. Hence, the advantage of the approach
lined above is that the auxiliary-field distribution may ta
any form.

Secondly, it has been proposed by several authors@10,11#
that OJK theory is exact in an infinite number of dimensio

FIG. 1. Scaling function for the first order correction to th
correlation function.
e
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i-
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y
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Determining the dimensional dependence of the correc
term allows this hypothesis to be examined.

The main result of this paper is that the first order corr
tion term to the correlation function isO(1/d2), which gives
further confidence to the assertion that OJK theory beco
exact in the large-d limit. This may be compared to the ca
culation of Liu and Mazenko@11#, in which they made a
perturbative expansion neard51 and d5` about the ap-
proximate theory developed by Mazenko@15#. At large d,
the first order correction term in their expansion was fou
to beO(1/d). The relative sizes of these corrections are co
sistent with numerical simulations@4#, which show that the
OJK result provides a marginally more accurate prediction
simulation data for the pair correlation function than t
more sophisticated approach of Mazenko. However both
sults do suggest that the results of OJK are asymptotic
exact in infinite-dimensional systems. We also note that i
recent work, Mazenko@8# developed a perturbation expan
sion in the cumulants, which at zeroth order recovers
OJK result. At second order, however, significant deviatio
from the OJK theory are obtained at larged, in contrast to
the O(1/d2) correction obtained here.

The two-time correction term to the correlation function
given by Eq.~88!. In the limit t1@t2 @on comparing Eqs.
~94! and ~96!#, we find that the correction term has exact
the same form as the zero order result, and the expected
result,l̄5d/2, is recovered.

If we examine the leading order correction at equal tim
given by Eq.~91!, the first observation is that this function
odd in r , as is the zero order term. Porod’s law@12# is there-
fore obeyed; theO(r ) term in the expansion@Eq. ~93!# modi-
fies the amplitude of the large-k tail, which is proportional to
the density of defects@1,12,16#. The absence of anr 2 term
ensures that the correction term satisfies the Tomita sum
@13#, *0

`dk@kd11S(k)2A#50, whereA is the amplitude of
the Porod tail. We also note that the perturbation has a n

FIG. 2. Comparison of the OJK and perturbed correlation fu
tions, shown ford52, 3, and 4. The solid line is the OJK resu
which is independent of dimension. As the dimension increases
size of the perturbation decreases.



io

th

er
m
ts
c
r-
h
th
d

e
he

e

s
f
t

io
na

il-
h
a
g

te

a

d
s

la

-

n

e

trix
:

r

tor

sian

are

al

en-

5518 PRE 58C. L. EMMOTT
ligible effect on the large-distance behavior of the correlat
function, see Fig. 1.

Figure 2 demonstrates how the perturbation modifies
OJK result, plottingC01C1 for d52, 3, and 4. Although
this calculation is only valid at larged, this graph demon-
strates that the correction term will have the effect of low
ing the OJK result. This is exactly as expected, since Hu
yun and Bray@4# showed, by comparing simulation resul
with OJK theory, that while the OJK result provides an a
curate prediction for initial conditions with short-range co
relations, the theoretical result is slightly higher than t
simulation data. However, it has also been demonstrated
when long-range correlation are present in the initial con
tions, the OJK results are no longer satisfactory@4#. This
suggests that a possible extension to this work could b
consider the effects of long-range initial conditions on t
calculation.

The main limitation of this calculation is that to retriev
the full evolution equation for the auxiliary field@Eq. ~9!#,
we need to set the perturbation parameterl to 1. This means
that the calculation of the entire correction term require
sum over all orders inl. However, due to the complexity o
the present calculation, I have been unable to evaluate
correction terms at higher orders inl. In principle the sum of
the higher order terms could alter thed dependence of the
correction term, but the result remains a strong indicat
that OJK theory becomes exact in an infinite-dimensio
system.

Finally, since we noted that the distribution of the aux
iary field is non-Gaussian, it is of interest to consider t
exact form of this distribution. This can be calculated
follows; the distribution can be written in the followin
form, P(x)5^d@x2m(r ,t)#&, this may be expanded inl
using m(r ,t)5m0(r ,t)1lm1(r ,t)1O(l2), to give P(x)
5^d@x2m0(r ,t)#&2l^m1(r ,t) (d/dx) d@x2m0(r ,t)#&. The
first term on the right-hand side reduces to the expec
Gaussian distribution; the first order term inl can be evalu-
ated using a similar method to the correlation function c
culation, i.e., by inserting the expression form1(r ,t), multi-
plying by the relevant probability distribution function, an
completing the integrals. However, we will leave this que
tion to future work.
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APPENDIX A: EVALUATION OF THE JOINT
PROBABILITY DISTRIBUTION

In this appendix the joint probability distribution is ex
plicitly calculated. It is defined by

P~m̃!5
1

~2p!~d13!/2~detA21!1/2
expF2

1

2
m̃iAi j m̃j G ,

~A1!

whereAi j
215^m̃im̃j& and the vectorm̃ is defined in Eq.~32!.

The first step is to calculate all the correlators which defi
n

e

-
a-

-

e
at

i-

to

a

he

n
l

e
s

d

l-

-

n

e

the elements of the matrixA21; we can then find the invers
of this matrix (Ai j ) and the determinant detA21.

1. Calculation of the correlators

In this section we evaluate all the elements of the ma
Ai j

215^m̃im̃j&; for this we require the following correlators
^m0(x,t)m0(x8,t8)&, ^m0(x,t) (]/]xi8) m0(x8,t8)&, and
^(]/]xi) m0(x,t) (]/]xj ) m0(x,t)&.

Substituting Eq.~20! into Eq.~18! gives an expression fo
the auxiliary fieldm0(x,t):

m0~x,t !5
1

~4pDt !d/2E d2m m0~m,0!expF2
~x2m!2

4Dt G ,
~A2!

and substituting this expression into the correla
^m0(x,t)m0(x8,t8)& gives

^m0~x,t !m0~x8,t8!&

5
1

~4pD !d~ tt8!d/2E ddmE ddhDd~m2h!

3expF2
~x2m!2

4Dt
2

~x82h!2

4Dt8
G , ~A3!

where we have already applied the conventional Gaus
initial conditions^m0(x1r ,0)m0(x,0)&5Dd(r ).

This integral may be evaluated by completing the squ
in the exponent and making a change of variablesm85m
2(t8x1tx8)/(t1t8), leaving a simple Gaussian integr
which, once completed, gives

^m0~x,t !m0~x8,t8!&5
D

@4pD~ t1t8!#d/2
expF2

~x2x8!2

4D~ t1t8!
G .

~A4!

The remaining correlators are easily obtained by differ
tiating Eq.~A4!; we obtain

K m0~x,t !
]

]xi8
m0~x8,t8!L 5

~xi2xi8!

2D~ t1t8!
^m0~x,t !m0~x8,t8!&,

~A5!

K ]

]xi
m0~x,t !

]

]xj
m0~x,t !L 5

d i j

4Dt
^m0~x,t !m0~x,t !&.

~A6!

Substituting Eqs.~A4!, ~A5! and ~A6! into the definition of
A21 (Ai j

215^m̃im̃j&), we find
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A215S l

zD S 1 0 A A A

� a b c

0 1 A A A

••• aT
••• zl1 zw zy

••• bT
••• zw zl2 zv

••• cT
••• zy zv zl3

D ,

~A7!

where

z54Dt,

l5
D

~8pDt!d/2
, w5S 2t

t1t1
D d/2

expF2
~x1r2n!2

4D~ t11t! G ,

l15S t

t1
D d/2

, y5S 2t

t11t2
D d/2

expF2
r2

4D~ t11t2!G ,
l251, v5S 2t

t1t2
D d/2

expF2
~x2n!2

4D~ t21t!G , ~A8!

l35S t

t2
D d/2

,

a5~x1r2m!S 2t

t1t1
D ~d12!/2

expF2
~x1r2m!2

4D~ t11t! G ,
b5~n2m!expF2

~n2m!2

8Dt G ,
c5~x2m!S 2t

t1t2
D ~d12!/2

expF2
~x2m!2

4D~ t21t!G .
2. Calculation of A

The elements of the matrixA are calculated by construc
ing the adjoint and determinant of the inverse, sinceA
5Adj(A21)/det(A21). Let the elements of the adjoint b
defined by
Adj~A21!5S A A A

u i j j h z

A A A

••• jT
••• p s t

••• hT
••• s q u

••• zT
••• t u r

D . ~A9!

The elementsp,q,r ,...,u can then be calculated directly us
ing a formula for the determinant of a (d12)3(d12) ma-
trix of the form

B5S 1 0 A A

� a8 b8

0 1 A A

••• c8T
••• p8 q8

••• d8T
••• r 8 s8

D , ~A10!

which is given by

detB5~p82a8•c8!~s82b8•d8!2~q82b8•c8!~r 82a8•d8!.

~A11!

We derive this result by contracting the free indices in t
equation

detB5 (
i j . . . xyz

e i j •••xyzB1iB2 j •••Bd12z , ~A12!

wheree i j . . . xyz is ad12 anisotropic tensor, which takes th
value 1 if (i j •••xyz) is an even permutation of@123•••(d
12)#, 21 for an odd permutation, and zero otherwise.

First consider the sum over the indexi : B1i is only non-
zero if i 51, d11, or d12, (B1151, B1d115a18 and
B1d125b18), which implies that Eq.~A12! may be written as

detB5 (
jk•••xyz

e1 j . . . xyzB2 j •••Bd12z1D1 , ~A13!

where

D15 (
jk•••xyz

~ed11 jk . . . xyza18B2 j •••Bd12z

1ed12 jk . . . xyzb18B2 j •••Bd12z!. ~A14!

We now complete the sum overj in Eq. ~A14! by noting that
the first term on the right-hand side of this expression w
only be nonzero ifj 52 or j 5d12, whereas the second term
will only make a nonzero contribution ifj 52 or j 5d11,
giving
D15 (
k•••xyz

~ed11d12k . . . xyza18b28B3k•••Bd12z1ed12d11k . . . xyzb18a28B3k•••Bd12z1ed112k . . . xyza18B3k•••Bd12z

1ed12k . . . xyzb18B3k•••Bd12z!. ~A15!

We can now complete the sum over all the remaining indices for the first two terms on the right-hand side of Eq.~A15!, since
for a nonzero contribution we must havek53, l 54, . . . ,x5d and eithery51 andz52, or y52 andz51. After completing
the sum overk on the remaining right-hand side terms, Eq.~A15! gives
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D15a18c18b28d281b18d18a28c282a18d18b28c282b18c18a28d281 (
l ... xyz

~ed112d12l . . . xyza18b38B4l•••Bd12z

1ed123d11l . . . xyzb18a38B4l•••Bd12z1ed1123l . . . xyza18B4l•••Bd12z1ed1223l . . . xyzb18B4l•••Bd12z!. ~A16!
fre

th

di-
ion

ad-
lity
g

We can use this method repeatedly to sum over all the
indices in Eq.~A16!, eventually giving

D15(
j 52

d

~a18c18bj8dj81b18d18aj8cj82a18d18bj8cj82b18c18aj8dj8!

2sa18c181qa18d182pb18d181rb18c18 . ~A17!

Substituting Eq.~A17! back into Eq.~A13!, we obtain

detB5 (
jk . . . xyz

e1 j . . . xyzB2 j•••Bd12z2sa18c181qa18d18

2pb18d181rb18c181(
j 52

d

~a18c18bj8dj81b18d18aj8cj8

2a18d18bj8cj82b18c18aj8dj8!. ~A18!

We can now repeat this entire procedure to complete
sums over the indicesj . . . x, obtaining

detB5(
yz

e12 . . .dyzBd11yBd12z2sa8•c81qa8•d82pb8•d8

1rb8•c81(
i 51

d

(
j . i

d

~ai8ci8bj8dj81bi8di8aj8cj8

2ai8di8bj8cj82bi8ci8aj8dj8!. ~A19!

Two of these terms simplify further; we find

(
yz

e12 . . .dyzBd11yBd12z5ps2qr,

(
i 51

d

(
j . i

d

~ai8ci8bj8dj81bi8di8aj8cj82ai8di8bj8cj82bi8ci8aj8dj8!

5~a8•c8!~b8•d8!2~a8•d8!~b8•c8!,

and therefore Eq.~A19! finally reduces to

detB5~p82a8•c8!~s82b8•d8!2~q82b8•c8!~r 82a8•d8!.
~A20!

Having calculated the determinant ofB, we can use this
result to evaluate the elementsp,q,r ,...,u of the adjoint ma-
trix @Eq. ~A9!#. We obtain

p5S l

zD d12

@~zl22b2!~zl32c2!2~zv2b•c!2#,

~A21!
e

e

q5S l

zD d12

@~zl12a2!~zl32c2!2~zy2a•c!2#,

~A22!

r 5S l

zD d12

@~zl12a2!~zl22b2!2~zw2a•b!2#,

~A23!

s5S l

zD d12

@~zv2b•c!~zy2a•c!2~zw2a•b!~zl32c2!#,

~A24!

t5S l

zD d12

@~zw2a•b!~zv2b•c!2~zl22b2!~zy2a•c!#,

~A25!

u5S l

zD d12

@~zw2a•b!~zy2a•c!2~zl12a2!~zv2b•c!#.

~A26!

The remaining elements of the adjoint are evaluated
rectly by a componentwise expansion of the equat
A21Adj(A21)5det(A21)I , giving the expressions

j52~pa1sb1tc!, ~A27!

h52~sa1qb1uc!, ~A28!

z52~ ta1ub1rc!, ~A29!

u i j 5
z

l
~detA21!d i j 2aij j2bih j2ciz j . ~A30!

Now that we have evaluated all the components of the
joint, we can evaluate the expression for the joint probabi
distribution,P(m̃), in terms of these variables. Substitutin
Eq. ~A9! into Eq. ~A1! and usingA5Adj(A21)/det(A21),
we find

P~m̃!5
1

~2p!~d13!/2~detA21!1/2
expF2

F~m̃!

2 detA21G ,

~A31!

where

F~m̃!5@mk8uklml812j•m8m~1!12h•m8m~2!

12z•m8m~3!1pm~1!21qm~2!21rm~3!2

12sm~1!m~2!12tm~1!m~3!12um~2!m~3!#.

~A32!
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3. Identities relating the components of the adjoint ofA21

to the determinant of A21

In the calculation described in this paper, there are sev
expressions which are frequently used to simplify the al
bra. These are all derived directly from the componentw
expansion of the equationA21Adj(A21)5detA21I , and are
listed here for ease of reference.

p~zl12a2!1s~zw2a•b!1t~zy2a•c!5
z

l
detA21,

~A33!

s~zl12a2!1q~zw2a•b!1u~zy2a•c!50, ~A34!

t~zl12a2!1u~zw2a•b!1r ~zy2a•c!50, ~A35!

p~zw2a•b!1s~zl22b2!1t~zv2b•c!50, ~A36!

s~zw2a•b!1q~zl22b2!1u~zv2b•c!5
z

l
detA21,

~A37!

t~zw2a•b!1u~zl22b2!1r ~zv2b•c!50, ~A38!

p~zy2a•c!1s~zv2b•c!1t~zl32c2!50, ~A39!

s~zy2a•c!1q~zv2b•c!1u~zl32c2!50, ~A40!

t~zy2a•c!1u~zv2b•c!1r ~zl32c2!5
z

l
detA21.

~A41!

In addition, by using the definitions ofp,q,...,u @from Eqs.
~A21!–~A26!# and Eqs.~A33!, ~A34!, ~A37!, ~A39!, and
~A40!, we can see that

~pq2s2!5S l

zD d11

detA21~zl32c2!, ~A42!

~qr2u2!5S l

zD d11

detA21~zl12a2!, ~A43!

~us2qt!5S l

zD d11

detA21~zy2a•c!. ~A44!

APPENDIX B: CALCULATION OF THE INVERSE
AND DETERMINANT OF V

In this appendix, the expressions for the determinant
inverse of the matrixV, which are required for the comple
tion of the integrals in Eqs.~47!–~50!, are calculated. The
matrix V(ũ,ṽ) is defined by

V i j ~ ũ,ṽ !5
1

detA21S u i j 2
h ih j

q
1

~pq2s2!

q
hihj~ ũ221! D

12ṽd i j , ~B1!

where h, h, and u are defined by Eqs.~38!, ~A27!, and
~A30!, respectively. Substituting forh, h and u into Eq.
al
-
e

d

~B1!, and using Eqs.~A22!, ~A29!, and ~A42!–~A44!, we
find the expression forV(ũ,ṽ) reduces to

V i j ~ ũ,ṽ !5
z

l
@Ld i j 1m̃aiaj1 j̃~aicj1ciaj !1 ñcicj #,

~B2!

where

L5112l ṽ/z, ~B3!

m̃5
ũ 2

q̃
~zl32c2!, ~B4!

j̃52
ũ 2

q̃
~zy2a•c!, ~B5!

ñ5
ũ 2

q̃
~zl12a2!1

12ũ 2

zl32c2
, ~B6!

q̃5S z

l D d12

q5~zl12a2!~zl32c2!2~zy2a•c!2.

~B7!

1. Determinant of V„ũ,ṽ…

The determinant of the matrixV(ũ,ṽ) is calculated by
evaluating the product of itsd eigenvalues. Any vector or
thogonal to botha andc will have eigenvaluezL/l, so we
need only calculate the two remaining eigenvalues, wh
are associated with the eigenvectors which lie in the pl
spanned bya andc. The eigenvalue equation for these tw
may be written as

V i j ~aj1gcj !5b~ai1gci !. ~B8!

We can substitute forV(ũ,ṽ) from Eq. ~B1! and complete
the sum over the indexj ; by equating the coefficients ofai
andci we then obtain two simultaneous equations forb and
g, given by

b5
z

l
@L1m̃a21 j̃a–c1g~m̃a–c1 j̃c2!#, ~B9!

bg5
z

l
@j̃a21 ña–c1g~L1 j̃a–c1 ñc2!#. ~B10!

On eliminatingg between these two equations, we have
quadratic equation inb, from which we extract the produc
of the two roots of the quadratic,b6 . This product is given
by

b1b25S z

l D 2

D~ ũ,ṽ !, ~B11!

where

D~ ũ,ṽ !5~L1 j̃a–c1 ñc2!~L1m̃a21 j̃a–c!2~ j̃a21 ña–c!

3~m̃a–c1 j̃c2!. ~B12!
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To simplify this expression we expand the brackets on
right-hand side, and use Eqs.~B4!–~B7!; after some algebra
Eq. ~B12! reduces to

D~ ũ,ṽ !5LS Lzl32~L21!c2

zl32c2 D 2
Lzl3ũ2

~zl32c2!

1
Lz2ũ2

q̃
~l1l32y2!2

~L21!ũ2

q̃
~a2c22a•c2!.

~B13!

We recall that the remaining eigenvectors all have the eig
valuezL/l, and therefore the product of all the eigenvalu
which is equal to the determinant, is given by

detV5Ld22S z

l D d

D~ ũ,ṽ !. ~B14!

2. Inverse of V„ũ,ṽ…

We begin to find the inverse ofV(ũ,ṽ) by defining the
variablesA, B, C, andD by the equation

V i j
215

l

z
~Ad i j 1Baiaj1C~aicj1ciaj !1Dcicj !.

~B15!

This must satisfy the identityV i j V jk
215d ik . Hence, by ex-

panding this equation and equating coefficients, we ob
the set of simultaneous equations given below:

O~1!, AL51, ~B16!
e

n-
,

in

O~aiak!, Am̃1B~L1m̃a21 j̃a–c!1C~m̃a–c1 j̃c2!50,
~B17!

O~aick!, Aj̃1C~L1m̃a21 j̃a–c!1D~m̃a–c1 j̃c2!50,
~B18!

O~ciak!, Aj̃1B~ j̃a21 ña–c!1C~L1 j̃a–c1 ñc2!50,
~B19!

O~cick!, Añ1C~ j̃a21 ña–c!1D~L1 j̃a–c1 ñc2!50.
~B20!

Since we have one more equation than we require to de
mine the solutions forA, B, C, andD, we discard one equa
tion and check for consistency later. Solving Eqs.~B16!,
~B17!, ~B18!, and~B20! simultaneously, and using Eqs.~B7!
and~B13! to simplify the results, we find, after some algebr
that

A5L21, ~B21!

B52
ũ2

Lq̃D
@Lzl32~L21!c2#, ~B22!

C5
ũ2

Lq̃D
@Lzy2~L21!a•c#, ~B23!

D52
ũ2

Lq̃D
@Lzl12~L21!a2#1

~ ũ221!

D~zl32c2!
.

~B24!

Substituting these results back into Eq.~B15!, we see that the
inverse ofV(ũ,ṽ) is given by
V i j
21~ ũ,ṽ !5

l

LzFd i j 1
L~ ũ221!

D~zl32c2!
1

ũ2

q̃D
@Lzy2~L21!a•c#~aicj1ciaj !

2
ũ2

q̃D
$@Lzl32~L21!c2#aiaj1@Lzl12~L21!a2#cicj%G . ~B25!

This expression may be simplified considerably by the introduction of a new variable. If we definek by the equation

ki5@Lzl32~L21!c2#ai2@Lzy2~L21!a•c#cj , ~B26!

then Eq.~B25! may be rewritten as

V i j
215

l

LzS d i j 2
cicj

@Lzl32~L21!c2#
2

ũ2kikj

q̃D@Lzl32~L21#c2!
D . ~B27!

APPENDIX C: CONTRACTION OVER THE i AND j INDICES

In this appendix we calculate a nonindexed expression for

]2I i j

]n i]n j
U

m

5 (
n51

4 ]2I n
i j

]n i]n j
U

m

~C1!

where:
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]2I 1
i j

]n i]n j
U

m

5
d i j

dp~zl32c2!@ q̃D~1,0!#1/2

]2s̃

]n i]n j
U

m

, ~C2!

]2I 2
i j

]n i]n j
U

m

52
1

p~zl32c2!

]2s̃

]n i]n j
U

m

E
0

`

dṽ
V i j

21~1,ṽ !

L~d22!/2@ q̃D~1,ṽ !#1/2
, ~C3!

]2I 3
i j

]n i]n j
U

m

5
k~0!.cd i j

dpl3~zl32c2!@ q̃D~1,0!#1/2

]2v
]n i]n j

U
m

, ~C4!

]2I 4
i j

]n i]n j
U

m

52
z

p~zl32c2!
E

0

` dṽ

Ld/2@ q̃D~1,ṽ !#1/2

]2v
]n i]n j

U
m

3S k~ ṽ !.cV i j
21~1,ṽ !

@Lzl32~L21!c2#
1

l~zl32c2!@ki~ ṽ !cj1cikj~ ṽ !#

z@Lzl32~L21!c2#2 D , ~C5!

and s̃5(z/l)d12s, s being defined by Eq.~A24!.
To obtain such an expression, we first evaluate the sum of the four expressions given by Eqs.~C2!–~C5!, and then contract

this expression over the free indicesi and j .
To simplify these expressions we need to calculate the second derivative ofs̃. Using]2b/]n i]n j um50 @from Eq.~A8!#, and

Eq. ~A24!, we find that

]2s̃

]n i]n j
U

m

5zS ~zy2a–c!
]2v

]n i]n j
U

m

2~zl32c2!
]w

]n i]n j
U

m
D . ~C6!

After substituting fork and the second derivative ofs̃ ~from equations~B26! and ~C6! respectively!, into equations
~C2!-~C5!, we may combine the resulting expressions to obtain:

]2~ I 1
i j 1I 3

i j !

]n i]n j
U

m

5
zd i j

pdl3@ q̃D~1,0!#1/2S y
]2v

]n i]n j
U

m

2l3

]2w

]n i]n j
U

m
D , ~C7!

]2~ I 2
i j 1I 4

i j !

]n i]n j
U

m

52E
0

` dṽ

pLd/2@ q̃D~1,ṽ !#1/2F l@k~ ṽ ! icj1cik~ ṽ ! j #

@Lzl32~L21!c2#2

]2v
]n i]n j

U
m

1zLV i j
21~1,ṽ !S yR

l3

]2v
]n i]n j

U
m

2 U ]2w

]n i]n j
U

m
D G ,

~C8!

where

R5
l3

y S Lzy2~L21!a–c

Lzl32~L21!c2D 511
~L21!~yc22l3a•c!

y@Lzl32~L21!c2#
. ~C9!

Before attempting to calculate the sum in Eq.~24!, we manipulate Eq.~C8! so that part of theṽ integral can be completed
exactly. This will simplify the algebra greatly, since the exactly integrable term in Eq.~C8! will cancel the contribution to the
sum from Eq.~C7!.

We define a new variableC i j by the equation
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V i j
21~1,ṽ !5

l

LzS d i j 2
C i j

q̃D~1,ṽ !
D ; ~C10!

on comparing this with Eq.~B25!, we find

C i j 5@Lzl32~L21!c2#aiaj2@Lzy2~L21!a–c#~aicj1ajci !1@Lzl12~L21!a2#cicj . ~C11!

Substituting forR andV i j
21 from Eqs.~C9! and ~C10!, Eq. ~C8! can be written as

]2~ I 2
i j 1I 4

i j !

]n i]n j
U

m

5S2
l

pE0

` dṽ

Ld/2@ q̃D~1,ṽ# !1/2F @k~ ṽ ! icj1cik~ ṽ ! j #

@Lzl32~L21!c2#2

]2v
]n i]n j

U
m

1
~L21!~yc22l3a•c!d i j

l3@Lzl32~L21!c2#

]2v
]n i]n j

U
m

2
C i j

q̃D~1,ṽ !
S yR

l3

]2v
]n i]n j

U
m

2
]2w

]n i]n j
U

m
D G , ~C12!

where

S52
ld i j

p S y

l3

]2v
]n i]n j

U
m

2
]2w

]n i]n j
U

m
D E

0

` dṽ

Ld/2@ q̃D~1,ṽ !#1/2
. ~C13!

We now define a second new variableQ by the equation

D~1,ṽ !5L2D~1,0!@12Q~ ṽ !#, ~C14!

and, using Eq.~B13!, we find that

Q5
L~L21!z~l3a222ya–c1l1c2!2~L21!2~a2c22a•c2!

L2z2~l1l32y2!
. ~C15!

On substituting forD(1,ṽ) from Eq. ~C14! into Eq. ~C13!, and expanding the expression (12Q)21/2 using the binomial
theorem, we find that

S5
2ld i j

p@ q̃D~1,0!#1/2S y

l3

]2v
]n i]n j

U
m

2
]2w

]n i]n j
U

m
D E

0

` dṽ

L~d12!/2F 11 (
m51

` S 1

2

m
D QmG . ~C16!

Hence, using*0
`L2(d12)/25z/(ld), and inserting Eq.~C7! in the expression forS, we find that Eq.~C16! reduces to

S52
ld i j

p@ q̃D~1,0!#1/2S y

l3

]2v
]n i]n j

U
m

2
]2w

]n i]n j
U

m
D E

0

` dṽ

L~d12!/2(m51

` S 1

2

m
D Qm2

]2~ I 1
i j 1I 3

i j !

]n i]n j
U

m

. ~C17!

Next, substituting Eq.~C17! into Eq. ~C12! and using Eq.~C1!, we find that

]2I i j

]n i]n j
U

m

52
ld i j

p@ q̃D~1,0!#1/2E0

` dṽ

L~d12!/2(m51

` S 1

2

m
D Qm

2
l

p~ q̃D~1,0!!1/2E0

` dṽ

L~d12!/2~12Q!1/2F ~L21!~yc22l3a•c!d i j

l3@Lzl32~L21!c2#

]2v
]n i]n j

U
m

1
@k~ ṽ ! icj1cik~ ṽ ! j #

@Lzl32~L21!c2#2

]2v
]n i]n j

U
m

2
C i j

L2q̃D~1,0!~12Q!
S yR

l3

]2v
]n i]n j

U
m

2
]2w

]n i]n j
U

m
D G .

~C18!
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Before we start the contraction of Eq.~C18! over the in-
dices i and j it is convenient to derive some useful resul
First, we calculate the derivatives ofv and w @from Eqs.
~A8!#; these are given by

]2v
]n i]n j

U
m

5Fcicj

z2v
2

vd i j

2D~ t21t!G
m

, ~C19!

]2w

]n i]n j
U

m

5Faiaj

z2w
2

wd i j

2D~ t11t!G
m

. ~C20!

~From this point on, we will use the notationvm andwm to
representv and w evaluatedn5m). Using these equation
together with Eqs.~B26! and~C11!, we evaluate the follow-
ing expressions:

d i j

]2v
]n i]n j

U
m

5S c2

z2vm

2
vmd

2D~ t21t!D , ~C21!

d i j

]2w

]n i]n j
U

m

5S a2

z2wm

2
wmd

2D~ t11t!D , ~C22!

@k~ ṽ ! icj1cik~ ṽ ! j #
]2v

]n i]n j
U

m

52zL~l3a•c2yc2!

3S c2

z2vm

2
vm

2D~ t21t!D ,

~C23!
.
C i j ~ ṽ !d i j 5Lz~l3a222ya.c1l1c2!

22~L21!~a2c22a–c2!, ~C24!

C i j

]2v
]n i]n j

U
m

5S c2

z2vm

2
vm

2D~ t21t!D C i j d i j

2
~Lzl32~L21!c2!

z2vm

~a2c22a–c2!, ~C25!

C i j

]2w

]n i]n j
U

m

5S a2

z2wm

2
wm

2D~ t11t!D C i j d i j

2
@Lzl12~L21!a2#

z2wm

~a2c22a–c2!. ~C26!

Finally, we can complete the contraction overi and j by
substituting Eqs.~C21!–~C26!, together with Eqs.~C9! and
~C15!! into Eq. ~C18! to give

]2I i j

]n i]n j
U

m

52
l

zpE0

`

dṽ (
n51

6

Tn , ~C27!

where
T15

(
m51

` S 1

2

m
D Qm

~l1l32y2!1/2L~d12!/2F y

l3
S c2

z2vm

2
vmd

2D~ t21t!D 2S a2

z2wm

2
wmd

2D~ t11t!D G , ~C28!

T25
~L21!~yc22l3a–c!

L~d12!/2l3~l1l32y2!1/2~12Q!1/2@Lzl32~L21!c2#
S c2

z2vm

2
vmd

2D~ t21t!D , ~C29!

T35
2z~l3a–c2yc2!

Ld/2~l1l32y2!1/2~12Q!1/2@Lzl32~L21!c2#2 S c2

z2vm

2
vm

2D~ t21t!D , ~C30!

T45
z24~a2c22a–c2!

L~d16!/2~l1l32y2!3/2~12Q!3/2S @Lzy2~L21!a–c#

vm
2

@Lzl12~L21!a2#

wm
D , ~C31!

T55
2@l3a222ya•c1l1c2!

L~d14!/2z~l1l32y2!3/2~12Q!3/2F yR

l3
S c2

z2vm

2
vm

2D~ t21t!D 2S a2

z2wm

2
wm

2D~ t11t!D G , ~C32!
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2~L21!~a2c22a–c2!

L~d16!/2z2~l1l32y2!3/2~12Q!3/2S yR

l3
S c2

z2vm

2
vm

2D~ t21t!D 2S a2

z2wm

2
wm

2D~ t11t!D G . ~C33!

APPENDIX D

1. Large-d behavior of Tn

In this section we will demonstrate that the large-d behavior of the termsTi , which are defined by Eqs.~C28!–~C33!, is
controlled, and hence that we are justified in applying the method of steepest descents to them̂ andc integrals in Eq.~71!. To
simplify the algebra within this section we define several new variables:

f 15~12x/d!, g5S 4t1t2

~ t11t2!2D d/4

expS 2r 2

4D~ t11t2! D ,

f 25~12x/2d!, E5 f 2
~2d12!/2expS 2

xm̂2

8D f 2
D ,

f 35S 12
t2

t11t2
x/dD , Es5 f 3

~2d12!/2expS r2

4D~ t11t2!
2

@r2~xt2!1/2m̂#2

4D~ t11t2! f 3
D .

Therefore, the set of variables given by Eqs.~A8!, with which the termsTi are defined, may be rewritten as

z54Dt2f 1 , wm5g f 3f 1
d/2S t2

t1
D d/4

Es ,

l15S t2

t1
D d/2

f 1
d/2, y5lS t2

t1
D d/4

f 1
d/2g, ~D1!

l35 f 1
d/2, a5

2t2g

t11t2
f 1

~d12!/2S t2

t1
D d/4

@r2~xt2!1/2m̂#Es ,

vm5 f 2f 1
d/2E, c52~xt2!1/2f 1

~d12!/2m̂E.

To investigate the large-d behavior of theTn , we substitute these variables back into Eqs.~C28!–~C33! to obtain

T15

g (
m51

` S 1

2

m
D Qm

2DL~d12!/2~12g2!1/2F E

2t2
S xm̂2

4D f 2
2dD 2

Es

t11t2
S @r2~xt2!1/2m̂#2

2D f 3~ t11t2!
2dD G , ~D2!

T25
2g~L21! f 1

~d12!/2E2

4Dt2~ t11t2!L~d12!/2~12g2!1/2~12Q!1/2S xm̂2

4D f 2
2dD $xm̂2@2t2Es2~ t11t2!E#22~xt2!1/2m̂•rEs%

4DL2~L21! f 1
~d12!/2xm̂2E2

, ~D3!

T35
2g f 1

~d12!/2E2

Ld/2t2~ t11t2!~12g2!1/2~12Q!1/2S xm̂2

4D f 2
21D $xm̂2@2t2Es2~ t11t2!E#22~xt2!1/2m̂•rEs%

@4DL2~L21! f 1
~d12!/2xm̂2E2#2

, ~D4!

T45
x f1

~d12!/2EEs~m̂2r22m̂•r2!

16D4L~d16!/2~ t11t2!2~12g2!3/2~12Q!3/2Fg3Es

f 2
S DL2

~L21! f 1
~d12!/2EEs

2~ t11t2!
@xt2m̂22~xt2!1/2m̂•r # D

2
gE

f 3
S DL2

g2~L21!t2f 1
~d12!/2Es

2

~ t11t2!2
@r2~xt2!1/2m̂#2D G , ~D5!
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2g~12g2!23/2f 1

~d12!/2

8D2L~d14!/2~12Q!3/2 FRE

2t2
S xm̂2

4D f 2
21D 2

Es

t11t2
S @r2~xt2!1/2m̂#2

2D~ t11t2! f 3
21D G

3FxE2m̂21
4t2g2Es

2

~ t11t2!2 ~r2~xt2!1/2m̂#22
4g2EEs

~ t11t2!
@xt2m̂22~xt2!1/2m̂•r #G , ~D6!

T65
~L21!xt2g3f 1

d12E2Es
2~m̂2r22m̂•r2!

4D3~ t11t2!2L~d16!/2~12g2!3/2~12Q!3/2FRE

2t2
S xm̂2

4D f 2
21D 2

Es

~ t11t2!
S @r2~xt2!1/2m̂#2

2D~ t11t2! f 3
21D G , ~D7!

where

Q5
~L21! f 1

~d12!/2

4LD~12g2!
F 4t2g2Es

2

~ t11t2!2 @r2~xt2!1/2m̂#22
4g2EEs

~ t11t2!
@xt2m̂22~xt2!1/2m̂•r #1xE2m̂2

2
xt2~L21! f 1

~d12!/2

LD S gEEs

t11t2
D 2

~m2r22m̂•r2!G , ~D8!

R511
~L21!E f1

~d12!/2$xm̂2@~ t11t2!E22t2Es#12Es~xt2!1/2m̂•r%

~ t11t2!@4DL2~L21! f 1
~d12!/2xm̂2E2#

. ~D9!

L5112w̃/d, and (m
1
2 ) are binomial coefficients.

Although the above expressions are rather complicated, we are only interested in determining whether the large-d behavior
in each case is bounded. We notice that all the factors (t2 /t1)d/4 cancel, and the only terms which have ad-dependent exponen
are f 1

d/2 , f 2
d/2 , f 3

d/2 andLd/2. However, the large-d limit of each of these expressions is independent ofd. We have

lim
d→`

f 1
d/25expS 2

x

2D , lim
d→`

f 2
d/25expS 2

x

4D , ~D10!

lim
d→`

f 3
d/25expS 2

t2x

2~ t11t2! D , lim
d→`

L2d/25exp~2w̃!. ~D11!

At large d therefore, all the termsTn in Eq. ~71!, are dominated by the exponential factor exp@2dg(x)#, and hence we may
complete the integral using the method of steepest descents.

2. 1/d expansion

In this section we evaluate the leading order term in the 1/d expansion of each of the expressions forTn @given by Eqs.
~D2!–~D7!# evaluated atm̂252D andc5p/2, wherec is the angle betweenr andm̂. Since the final part of this calculatio
requires the integration of these terms over the variablesx andw̃, it is important to check that these integrals do not alter
d dependence of higher orders in the expansion; this ensures that we have calculated the entire leading order contr
we examine the expression for eachTn in turn, we see that, in the large-d limit, every order in the 1/d expansion will have an
exponential factor with a negativex and w̃ exponent. The presence of these exponential factors ensures that thex and w̃
integrals will not alter thed dependence at any order in the expansion, so we only need to calculate the leading orde

We first evaluate the variablesE, Es , R, andQ at the position of the minimum which controls the value of the integra
Eq. ~71! (m̂5A2D,c5p/2); then expanding to leading order in 1/d givesE51, Es51, R51 and

Q5
w̃ exp~2x/2!

d~12g2!
FxS 12

4t1t2g2

~ t11t2!2D1
2t2g2r2

D~ t11t2!2G . ~D12!

Using these results we can now calculate the terms up toO(1) in the expansion of each expression forTn @Eqs. ~D2!–
~D7!#; these are given by
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T15
g~ t22t1!exp~2x/2!w̃ exp~2w̃!

8Dt2~ t11t2!~12g2!3/2 FxS 12
4t1t2g2

~ t11t2!2D1
2t2g2r2

D~ t11t2!2G , ~D13!

T25
g~ t22t1!x exp~2x/2!w̃ exp~2w̃!

4Dt2~ t11t2!~12g2!1/2
, ~D14!

T35
g~ t22t1!x~x22!exp~2x/2!exp~2w̃!

8Dt2~ t11t2!~12g2!1/2
, ~D15!

T45
2gr2x exp~2x/2!exp~2w̃!

8D2~ t11t2!2~12g2!1/2
, ~D16!

T55
2g exp~2x/2!exp~2w̃!

8Dt2~12g2!3/2 FxS 12
4t1t2g2

~ t11t2!2D1
2t2g2r2

D~ t11t2!2GF t22t1

t11t2
2

t2r2

D~ t11t2!2
1

x

2 S 12
4t2

2

~ t11t2!2D G , ~D17!

T65O~1/d!. ~D18!
ra

.
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